Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-26T01:00:28.918Z Has data issue: false hasContentIssue false

GABAA receptors in the retina of the cat: An immunohistochemical study of wholemounts, sections, and dissociated cells

Published online by Cambridge University Press:  02 June 2009

Thomas E. Hughes
Affiliation:
Department of Neurosciences, University of California, San Diego, La Jolla Max-Planck-Institut för Hirnforschung, Deutschordenstrasse 46, D-6000 Frankfurt;sol;M. 71, West Germany
Ulrike Grönert
Affiliation:
Max-Planck-Institut för Hirnforschung, Deutschordenstrasse 46, D-6000 Frankfurt;sol;M. 71, West Germany
Harvey J. Karten
Affiliation:
Department of Neurosciences, University of California, San Diego, La Jolla

Abstract

Gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter used by many neurons of the mammalian retina. To identify the synaptic targets of these cells, we undertook an immunohistochemical study with a monoclonal antibody that recognizes the GABAA receptors (62−3G1, generously donated by A. de Blas). This antibody labels the somata of at least one group of amacrine cells in the inner nuclear layer. It also labels two groups of somata in the ganglion cell layer: one small and the other much larger. The small cells are likely to be displaced amacrine cells based on their size, although some could be gamma ganglion cells. The much larger receptor-positive cells are clearly ganglion cells, based both on their size and the antibody labeling of the initial portion of their axon. In the peripheral retina, the size of these large somata suggests that many are beta ganglion cells. However, at any point across the retina the density of these cells never exceeded 50% of the density of beta cells as a whole.

The antibody also labels a dense plexus of processes that extends throughout the inner plexiform layer (IPL), with a marked concentration in the inner third of the layer. This is the portion of the IPL in which the rod bipolar cells terminate. It is difficult to recognize processes of individual cells in the IPL, so retinae were dissociated. The rod bipolar cells were identified by protein kinase C immunoreactivity (Negishi et al., 1988; Karschin & Wässle, 1990). They were not labeled by the GABAA receptor antibody. This is surprising in light of tight-seal, whole cell voltage-clamp recordings that have shown that the rod bipolars express functional GABAA receptors. One possible explanation is that the antibody recognizes only a subset of the GABAA receptors.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altschuler, R.A., Betz, H., Parakkal, M.H., Reeks, K.A. & Wenthold, R.J. (1986). Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Research 369, 316320.CrossRefGoogle ScholarPubMed
Barnard, E.A., Darlison, M.G. & Seeburg, P. (1987). Molecular biology of the GABAA receptor: the receptor/;channel superfamily. Trends in Neuroscience 10, 502509.Google Scholar
Bolz, J., Frumkes, T., Voigt, T. & Wässle, H. (1985). Action and localization of gamma-aminobutyric acid in the cat retina. Journal of Physiology (London) 362, 369393.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. Journal of Physiology (London) 240, 397419.CrossRefGoogle ScholarPubMed
Brecha, N., Francis, A. & Schechter, N. (1971). Rapid loss of nicotine-cholinergic receptor binding activity in the deafferented avian optic lobe. Brain Research 167, 273280.CrossRefGoogle Scholar
Chun, M.H. & Wässle, H. (1989). GABA-like immunoreactivity in the cat retina: electron miscroscopy. Journal of Comparative Neurology 279, 5567.CrossRefGoogle Scholar
De Blas, A.L., Vrrorica, J. & Friedrich, P. (1988). Localization of the GABAA receptor in the rat brain with a monoclonal antibody to the 57,000 Mr peptide of the GABAA receptor/;benzodiazepine receptor/;CL-channel complex. Journal of Neuroscience 8, 602614.Google Scholar
Deneris, E.S., Boulter, J., Connolly, J., Wada, E., Goldman, D., Swanson, L.W., Patrick, J. & Heinemann, S. (1989). Genes encoding neuronal nicotinic acetylcholine receptors. Clinical Chemistry 35, 731737.Google Scholar
Dingledine, R., Myers, S.J. & Nicholas, R.A. (1990). Molecular biology of mammalian amino-acid receptors. The FASEB Journal 4, 26362645.CrossRefGoogle ScholarPubMed
Downing, J.E.G., Kaneda, M., Kaneko, A. & Suzuki, S. (1989). Transmitter sensitivities, receptor distribution, and conductance mechanisms of mammalian retinal neurons. Society for Neuroscience Abstracts 15, 922.Google Scholar
Freed, M.A., Smith, R.G. & Sterling, P. (1987). Rod bipolar array in the cat retina: pattern of input from rods and GABA-accumulating amacrine cells. Journal of Comparative Neurology 266, 445455.CrossRefGoogle ScholarPubMed
Greeningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E.D. & Betz, H. (1987). The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature 328, 215220.CrossRefGoogle Scholar
Greferath, U., Grönert, U. & Wässle, H. (1990). Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. Journal of Comparative Neurology 301, 433442.CrossRefGoogle ScholarPubMed
Grönert, U., Greferath, U. & Wässle, H. (1989). Rod bipolar cells show protein kinase C-like immunoreactivity in the cat and other mammalian retinae. Society for Neuroscience Abstracts 15, 1209.Google Scholar
Gynther, I.C., Young, H.M. & Vaney, D.I. (1989). Topographic relationships between rod-signal interneurons in rabbit retina. Society for Neuroscience Abstracts 15, 967.Google Scholar
Häring, P., Stahli, C., Schoch, P., Takacs, B., Staehelin, T. & Möhler, H. (1985). Monoclonal antibodies reveal structural homogeneity of gamma-aminobutyric acid/;benzodiazepine receptor in different brain areas. Proceedings of the National Academy of Sciences of the U.S.A. 82, 48374841.CrossRefGoogle ScholarPubMed
Henley, J.M., Lindstrom, J.M. & Oswald, R.E. (1986). Acetylcholine receptor synthesis in retina and transport to optic tectum in goldfish. Science 232, 16271629.CrossRefGoogle ScholarPubMed
Hollmann, M., O'Shea-Greenfield, A., Rogers, S.W. & Heinemann, S. (1990 a). Cloning by functional expression of a member of the glutamate receptor family. Nature 343, 643648.Google Scholar
Hollmann, M., Rogers, S.W., O'Shea-Greenfield, A., Deneris, E.S., Hughes, T.E., Gasic, G.P. & Heinemann, S. (1990 b). The glutamate receptor GluR-K1: structure, function, and expression in the brain. In Cold Spring Harbor Symposium on Quantitative Biology, The Brain (in press).Google Scholar
Huba, R. & Hofmann, H-D. (1988). Tetanus toxin binding to isolated and cultured rat retinal glial cells. Glia 1, 156164.CrossRefGoogle ScholarPubMed
Hughes, T.E., Carey, R.G., Vitorica, J., De Blas, A.L. & Karten, J.H. (1989 a). Immunohistochemical localization of GABAA receptors in the retina of the primate (Saimiri sciureus). Visual Neuroscience 2, 565581.Google Scholar
Hughes, T.E., Grönert, U. & Karten, H.J. (1989 b). Immunohistochemical localization of GABAA receptors in the retina of the cat. Society for Neuroscience Abstracts 15, 1208.Google Scholar
Ishida, A.T. & Cohen, B.N. (1988). GABA-activated whole-cell currents in isolated retinal ganglion cells. Journal of Neurophysiology 6(2), 381396.CrossRefGoogle Scholar
Juiz, J.M., Helfert, R.H., Wenthold, R.J., De Blas, A.L. & Altschuler, R.A. (1989). Immunocytochemical localization of the GABAA receptor/;benzodiazepine receptor in the guinea pig cochlear nucleus: evidence for receptor localization heterogeneity. Brain Research 504(1), 173179.CrossRefGoogle ScholarPubMed
Kaneko, A. & Tachibana, M. (1986). Effects of gamma-aminobutyric acid on isolated cone photoreceptors of the turtle retina. Journal of Physiology (London) 373, 443461.CrossRefGoogle ScholarPubMed
Karschin, A. & Wässla, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of the rat retina. Journal of Neurophysiology 63, 860876.Google Scholar
Keinänen, K., Wisden, W., Sommer, B., Werner, P., Herb, A., Verdoorn, T.A., Sakmann, B. & Seeburg, P.H. (1990). A family of AMPA-selective glutamate receptors. Science 249, 556560.CrossRefGoogle ScholarPubMed
Keyser, K.T., Hughes, T.E., Whiting, P.J., Lindstorm, J.M. & Karten, H.J. (1988). Cholinoceptive neurons in the retina of the chick: an immunohistochemical study of the nicotinic acetylcholine receptors. Visual Neuroscience 1, 349366.Google Scholar
Kolb, H. & Nelson, R. (1983). Rod pathways in the retina of the cat. Vision Research 23, 301–12.CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells, and ganglion cells of the cat retina: a Golgi study. Vision Research 21, 10181114.Google ScholarPubMed
Koontz, M.A., Hendrickson, A.E. & Ryan, M.K. (1989). GABA-immunoreactive synaptic plexus in the nerve fiber layer of primate retina. Visual Neuroscience 2, 1925.CrossRefGoogle ScholarPubMed
Levitan, E.S., Blair, L.A.C., Dionne, V.E. & Barnard, E.A. (1988). Biophysical and pharmacological properties of cloned GABAA receptor subunits expressed in Xenopus oocytes. Neuron 1, 773781.CrossRefGoogle ScholarPubMed
Lipton, S.A. (1989). GABA-activated single channel currents in Outside-out membrane patches from rat retinal ganglion cells. Visual Neuroscience 3(3), 275279.Google Scholar
Mariani, A.P., Cosenza-Murphy, D. & Barker, J.L. (1987). GABAergic synapses and benzodiazepine receptors are not identically distributed in the primate retina. Brain Research 415, 152157.CrossRefGoogle Scholar
McGuire, B.A., Stevens, J.K. & Sterling, P. (1986). Microcircuitry of beta ganglion cells in cat retina. Journal of Neuroscience 6, 907918.CrossRefGoogle ScholarPubMed
Mosinger, J.L., Yazulla, S. & Studholme, K.M. (1986). GABA-like immunoreactivity in the vertebrate retina: a species comparison. Experimental Eye Research 42, 631644.Google Scholar
Nakamura, Y., McGuire, B.A. & Sterling, P. (1980). Interplexiform cell in cat retina: identification by uptake of [3H]GABA and serial reconstruction. Proceedings of the National Academy of Sciences of the U.S.A. 77, 658661.Google Scholar
Negishi, K., Kato, S. & Teranishi, T. (1988). Dopamine cells and rod bipolar cells contain protein kinase C-like immunoreactivity in some vertebrate retinas. Neuroscience Letters 94, 247252.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1985). A17: A broad-field amacrine cell in the rod system of the cat retina. Journal of Neurophysiology 54, 592614.CrossRefGoogle ScholarPubMed
Oertel, W.H., Schmechel, D.E., Tappaz, M.A. & Kopin, I.J. (1981). Production of a specific antiserum to rat brain glutamic-acid decarboxylase by injection of an antigen-antibody complex. Neuroscience 6, 26892700.CrossRefGoogle ScholarPubMed
Pourcho, R.G. (1980). Uptake of [3H]-glycine and [3H]-GABA by amacrine cells in the cat retina. Brain Research 198, 333346.Google Scholar
Pourcho, R.G. (1981). Autoradiographic localization of [3H]- muscimol in the cat retina. Brain Research 215, 187199.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Goebel, D.J. (1983). Neuronal subpopulations in cat retina which accumulate the GABA agonist, [3H]-muscimol: a combined Golgi and autoradiographic study. Journal of Comparative Neurology 219, 2535.CrossRefGoogle ScholarPubMed
Pourcho, R.G. & Owczarzak, M.T. (1989). Distribution of GABA immunoreactivity in the cat retina - a light-microscopic and electronmicroscopic study. Visual Neuroscience 2(5), 425435.Google Scholar
Pritchett, D.B., Sontheimer, H., Shivers, B.D., Ymer, S., Kettenmann, H., Schofield, P.R. & Seeburg, P.H. (1989). Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582.Google Scholar
Richards, J.G., Schoch, P., Häring, P., Takacs, B. & Möhler, H. (1987). Resolving GABAA/;benzodiazepine receptors: cellular and subcellular localization in the CNS with monoclonal antibodies. Journal of Neuroscience 7, 18661886.Google Scholar
Sargent, P.B., Pike, S.H., Nadel, D.B. & Lindstrom, J.M. (1989). Nicotinic acetylcholine receptor-like molecules in the retina, retinotectal pathway, and optic tectum of the frog. Journal of Neuroscience 9(2), 565573.CrossRefGoogle ScholarPubMed
Sarthy, P.V. & Lam, D.M.-K. (1979). Isolated cells from a mammalian retina. Brain Research 176, 208212.Google Scholar
Sarthy, P.V. & Fu, M. (1989). Localization of L-glutamic acid decarboxylase mRNA in cat retinal horizontal cells by in situ hybridization. Journal of Comparative Neurology 288, 593600.Google Scholar
Schoch, P., Häring, P., Takacs, B., Stähli, C. & Möhler, H. (1984). A GABA/;benzodiazepine receptor complex from bovine brain: Purification, reconstitution and immunological characterization. Journal of Receptor Research 4, 189200.Google Scholar
Soltesz, I., Roberts, J.D.B., Takagi, H., Richards, J.G., Mohler, H. & Somogyi, P. (1990). Synaptic and nonsynaptic localization of benzodiazepine/;GABAA receptor/;Cl-channel complex using monoclonal antibodies in the dorsal lateral geniculate nucleus of the cat. European Journal of Neuroscience 2, 414429.Google Scholar
Somogyi, P., Takagi, H., Richards, J.G. & Mohler, H. (1989). Sub-cellular localization of benzodiazepine/;GABAA receptors in the cerebellum of rat, cat, and monkey using monoclonal antibodies. Journal of Neuroscience 9, 21972209.Google Scholar
Stephenson, R.A., Casalotti, S.O., Mamalaki, C. & Barnard, E.A. (1986). Antibodies recognizing the GABAA/;benzodiazepine receptor included its regulatory sites. Journal of Neurochemistry 46, 854861.Google Scholar
Stevens, J.K., McGuire, B.A. & Sterling, P. (1980). Toward a functional architecture of the retina: serial reconstruction of adjacent ganglion cells. Science 207, 317319.Google Scholar
Strom-Mathisen, J., Liknes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, M.S. & Ottersen, O.P. (1983). First visualization of glutamate and GABA in neurones by immunocytochemistry. Nature 301, 517520.CrossRefGoogle Scholar
Suzuki, S., Tachibana, M. & Kaneko, A. (1990). Effects of glycine and GABA on isolated bipolar cells of the mouse retina. Journal of Physiology (London) 421, 645662.Google Scholar
Swanson, L.W., Simmons, D.M., Whiting, P.J. & Lindstrom, J. (1987). Immunohistochemical localization of neuronal nicotinic receptors in the rodent central nervous system. Journal of Neuroscience 7, 334342.Google Scholar
Tachibana, M. & Kaneko, A. (1987). Gamma-aminobutyric acid exerts a local inhibitory action on the axon terminal of bipolar cells: evidence for negative feedback from amacrine cells. Proceedings of the National Academy of Sciences of the U.S.A. 84, 35013505.CrossRefGoogle ScholarPubMed
Triller, A., Cluzeaud, F., Pfeiffer, F., Betz, H. & Korn, H. (1985). Distribution of glycine receptors at central synapses: an immunoelectron microscopy study. Journal of Cell Biology 101, 683688.Google Scholar
Van Den pol, A.N. & Gorcs, T. (1988). Glycine and glycine receptor immunoreactivity in brain and spinal cord. Journal of Neuroscience 8, 472492.Google Scholar
Vaney, D. (1990). The mosaic of amacrine cells in the mammalian retina. In Progress in Retinal Research, Vol. 9, ed. Osborne, N.N. & Chader, G.J., pp. 49100. Oxford:Pergamon Press.Google Scholar
Verdoorn, T.A., Draguhn, A., Sakmann, B., Prichett, D.B. & Seeburg, P.H. (1989). Human GABAA receptors assembled from different combinations of cloned subunits have different electrophysiological properties. Society for Neuroscience Abstracts 15, 970.Google Scholar
Veruki, M.L. & Yeh, H.H. (1989). GABA-activated currents in rat retinal ganglion cells. Society of Neuroscience Abstracts 15, 924.Google Scholar
Vitorica, J., Park, D., Chin, G. & De, Blas A.L. (1988). Monoclonal antibodies and conventional antisera to the GABAA receptor/;benzodiazepine receptor/;Cl channel complex. Journal of Neuroscience 8, 615622.CrossRefGoogle Scholar
Wässle, H. (1982). Morphological types and central projections of ganglion cells in the cat retina. In Progress in Retinal Research, Vol. 1, ed. Osborne, N.N. & Chader, G.J., pp. 125152. Oxford: Pergamon Press.Google Scholar
Wässle, H. & Chun, M.H. (1988). Dopaminergic and indoleamine-accumulating amacrine cells express GABA-like immunoreactivity in the cat retina. Journal of Neuroscience 8, 33833394.Google Scholar
Wässle, H. & Chun, M.H. (1989). GABA-like immunoreactivity in the cat retina: light microscopy. Journal of Comparative Neurology 279, 4354.Google Scholar
Wässle, H., Levick, W.R. & Cleland, B.G. (1975). The distribution of the alpha type of ganglion cells in the cat's retina. Journal of Comparative Neurology 159(3), 419438.CrossRefGoogle ScholarPubMed
Wässle, H., Chun, M.H. & Müller, F. (1987). Amacrine cells in the ganglion cell layer of the cat retina. Journal of Comparative Neurology 265, 391408.Google Scholar
Wenthold, R.J., Parakkal, M.H., Oberdorfer, M.D. & Altschuler, R.A. (1988). Glycine receptor immunoreactivity in the ventral cochlear nucleus of the guinea pig. Journal of Comparative Neurology 276, 423435.Google Scholar
Wisden, W., Morris, B.J., Darlison, M.G., Hunt, S.P. & Barnard, E.A. (1988). Distinct GABAAA receptor α subunit mRNAs show different patterns of expression in bovine brain. Neuron 1, 937947.CrossRefGoogle Scholar
Wong, R.O.L. & Hughes, A. (1987). The morphology, number, and distribution of a large population of confirmed displaced amacrine cells in the adult cat retina. Journal of Comparative Neurology 255, 159177.CrossRefGoogle ScholarPubMed
Yazulla, S., Studholme, K.M., Vitorica, J. & de Blas, A.L. (1989). Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. Journal of Comparative Neurology 280, 1526.CrossRefGoogle ScholarPubMed
Yeh, H.H., Lee, M.B. & Cheun, J.E. (1990). Properties of GABA-activated whole-cell currents in bipolar cells of the rat retina. Visual Neuroscience 4, 349357.CrossRefGoogle ScholarPubMed