Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T05:16:10.699Z Has data issue: false hasContentIssue false

Expression profiling of GABAA receptor β-subunits in the rat retina

Published online by Cambridge University Press:  02 June 2009

Elena V. Grigorenko
Affiliation:
Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem
Hermes H. Yeh
Affiliation:
Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Winston-Salem

Abstract

This study profiled the expression of the family of GABAA receptor β-subunits in the adult rat retina. Using a combination of reverse transcriptase reaction followed by polymerase chain reaction (RT-PCR) with gene-specific primers, the expression of mRNAs encoding the β1, β2, and β3 subunits was first examined in the intact retina and then in separated retinal nuclear layers. However, it was found that a critical analysis. had to be carried out at the level of the single cell in order to resolve the differential patterns of expression among the retinal cell types. When cells were isolated and identified following acute dissociation, RT-PCR revealed that individual rod photoreceptor cells expressed consistently the β1 and β2 messages while the bipolar cells expressed the β1 and β3 messages. Ganglion cells displayed considerable variability in β-subunit expression, perhaps reflecting their functional and morphological heterogeneity in the retina. In contrast, the nonneuronal Mueller cells did not express any of the β-subunit messages. These results indicate that the expression of GABAA receptor subunits is cell-type dependent. Furthermore, as the expression of other families of GABAA receptor subunits are profiled and the patterns of subunit assembly are better understood, our results raise the possibility that GABAA receptors with different subunit compositions can be expected to be coexpressed within a single retinal neuron.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bai, S.-H. & Slaughter, M.M. (1989). Effects of baclofen on transient neurons in the mudpuppy retina: Electrogenic and network actions. Journal of Neurophysiology 61, 382390.CrossRefGoogle ScholarPubMed
Brecha, N., Sterini, C. & Humphrey, M.F. (1991). Cellular distribution of GAD and GABAA receptor mRNAs in the retina. Cellular Molecular Neurobiology 11, 497509.CrossRefGoogle ScholarPubMed
Brecha, N.C. (1992). Expression of GABAA receptors in the vertebrate retina. Progress in Brain Research 90, 327.CrossRefGoogle ScholarPubMed
Browning, M.D., Bureau, M., Dudek, E.M. & Olsen, R.W. (1990). Protein kinase C and cAMP-dependent protein kinase phosphorylate the β-subunit of the purified γ-aminobutyric acid A receptor. Proceedings of the National Academy of Sciences of the U. S. A. 87, 13151318.CrossRefGoogle ScholarPubMed
Browning, M.D., Endo, S., Smith, G., Dudeck, E.M. & Olsen, R.W. (1993). Phosphorylation of the GABAA receptor by cAMP-dependent protein kinase and by protein kinase C: Analysis of the substrate domain. Neurochemical Research 18, 95100.CrossRefGoogle ScholarPubMed
Chun, M.H. & Wassle, H. (1989). GABA-like immunoreactivity in the cat retina: Electron microscopy. Journal of Comparative Neurology 279, 5567.CrossRefGoogle ScholarPubMed
Church, G.M. & Gilbert, W. (1984). Genomic sequencing. Proceedings of the National Academy of Sciences of the U. S. A. 81, 19911995.CrossRefGoogle ScholarPubMed
Cohen, B.N., Fain, G.L. & Fain, M.J. (1989). GABA and glycine channels in isolated ganglion cells from the goldfish retina. Journal of Physiology 417, 5382.CrossRefGoogle Scholar
Cutting, G.R., Lu, L., O≈Hara, B.F., Kasch, L.M., Montrose-Rafizadeh, C., Donovan, D.M., Shimada, S., Antonarakis, S.E., Guggino, W.B., Uhl, G.R. & Kazazian, H.H. Jr (1991). Cloning of the γ-aminobutyric acid (GABA) rr1 cDNA: A GABA receptor subunit highly expressed in the retina. Proceedings of the National Academy of Sciences of the U. S. A. 88, 26732677.CrossRefGoogle Scholar
Cutting, G.R., Curristin, S., Zoghbi, H., O≈Hara, B., Seldin, M.F. & Uhl, G.R. (1992). Identification of a putative γ-aminobutiric acid (GABA) receptor subunit rho2 cDNA and colocalization of the genes encoding rho2 (GABRR2) and rho1 (GABRR1) to human chromosome 6q14–q21 and mouse chromosome 4. Genomics 12, 801806.CrossRefGoogle Scholar
Dowling, J.E., Lasater, E.M., Van Buskirk, R. & Watling, K.J. (1983). Pharmacological properties of isolated fish horizontal cells. Vision Research 23:4, 421432.CrossRefGoogle ScholarPubMed
Eberwine, J., Yeh, H., Miyashiro, K., Cao, Y., Nair, S., Finnel, R., Zettel, M. & Coleman, P. (1992). Analysis of gene expression in single live neurons. Proceedings of the National Academy of Sciences of the U. S. A. 89, 30103014.CrossRefGoogle ScholarPubMed
Feigenspan, A., Wässle, H. & Bormann, J. (1993). Pharmacology of GABA receptor Cl-channels in rat retinal bipolar cells. Nature 361, 159161.CrossRefGoogle ScholarPubMed
Greferath, U., Müller, F., Wässle, H., Shivers, B. & Seeburg, P. (1993). Localization of GABAA receptors in the rat retina. Visual Neuroscience 10, 551561.CrossRefGoogle ScholarPubMed
Hughes, T.E., Grünert, U. & Karten, H.J. (1991). GABAA receptors in the retina of the cat: An immunohistochemical study of whole-mounts, sections, and dissociated cells. Visual Neuroscience 6, 229238.CrossRefGoogle Scholar
Ishida, A.T. & Cohen, B.N. (1988). GABA-activated whole-cell currents in isolated retinal ganglion cells. Journal of Neurophysiology 60, 381396.CrossRefGoogle ScholarPubMed
Kaneko, A., Pinto, L.H. & Tachibana, M. (1989). Transient calcium current of retinal bipolar cells of the mouse. Journal of Physiology 410, 613629.CrossRefGoogle ScholarPubMed
Karschin, A. & Wässle, H. (1990). Voltage- and transmitter-gated currents in isolated rod bipolar cells of rat retina. Journal of Neurophysiology 63, 860876.CrossRefGoogle ScholarPubMed
Khrestchatisky, M., Maclennan, A.J., Chiang, M.Y., Xu, W., Jackson, M.B., Brecha, N., Sternini, C., Olsen, R.W. & Tobin, A.J. (1989). A novel alpha subunit in rat brain GABAA receptors. Neuron 3, 745753.CrossRefGoogle ScholarPubMed
Lambolez, B., Audinat, E., Bochet, P., Crepel, F. & Rossier, J. (1992). AMPA receptor subunits expressed by single Purkinje cells. Neuron 9, 247258.CrossRefGoogle ScholarPubMed
Levitan, E.S., Schofield, P.R., Burt, D.R., Rhee, L.M., Wisden, W., Kohler, M., Fujita, N., Rodriguez, H., Stephenson, F.A., Darlison, M.G., Barnard, E.A. & Seeburg, P.H. (1988). Structural and functional basis of GABAA receptor heterogeneity. Nature 335, 7679.CrossRefGoogle ScholarPubMed
Maguire, G., Lukasiewicz, P. & Werblin, F. (1989). Amacrine cell interactions underlying the response to change in the tiger salamander retina. Journal of Neuroscience 9, 726735.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research 23, 11831195.CrossRefGoogle ScholarPubMed
Pan, Z.-H. & Slaughter, M.M. (1991). Control of retinal information coding by GABAB receptors. Journal of Neuroscience 11, 18101821.CrossRefGoogle ScholarPubMed
Pritchett, D.B., Sontheimer, H., Shivers, B.D., Ymer, S., Kettenmann, H., Schofield, P.R. & Seeburg, P.H. (1989). Importance of a novel GABAA receptor subunit for benzodiazepine pharmacology. Nature 338, 582585.CrossRefGoogle ScholarPubMed
Qian, H. & Dowling, J.E. (1993). Novel GABA responses from rod-driven retinal horizontal cells. Nature 361, 162164.CrossRefGoogle ScholarPubMed
Schofield, P.R., Darlison, M.G., Fujita, N., Burt, D.R., Rodriguez, F.A., Rhee, L.M., Ramachamdran, J., Reale, V., Glencourse, T.A., Seeburg, P.H. & Barnard, E.A. (1987). Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor super-family. Nature 328, 221227.CrossRefGoogle Scholar
Shimada, S., Cutting, G. & Uhl, G.R. (1992). Gamma-aminobutyric acid A or C receptor? γ-aminobutyric acid ρ1 receptor RNA induces bicuculline-, barbiturate-, and benzodiazepine-insensitive γ-aminobutyric acid responses in Xenopus oocytes. Molecular Pharmacology 41, 683687.Google ScholarPubMed
Shivers, B.D., Killisch, I., Sprengel, R., Sontheimer, H., Köhler, M., Schofield, P.R. & Seeburg, P.H. (1989). Two novel GABAA receptor subunits exist in distinct neuronal subpopulations. Neuron 3, 327337.CrossRefGoogle ScholarPubMed
Slaughter, M.M. & Bai, S.-H. (1989). Differential effects of baclofen on sustained and transient cells in the mudpuppy retina. Journal of Neurophysiology 61, 374381.CrossRefGoogle ScholarPubMed
Surmeier, D.J., Eberwine, J., Wilson, C.J., Cao, Y., Stefani, A. & Kitai, S.T. (1992). Dopamine receptor subtypes co-localize in rat striatonigral neurons. Proceedings of National Academy of Science of the U. S. A. 89, 1017810182.CrossRefGoogle Scholar
Tachibana, M. & Kaneko, A. (1984). Gamma-aminobutyric acid acts at axon terminals of turtle photoreceptors: Difference in sensitivity among cell types. Proceedings of the National Academy of Sciences of the U. S. A. 81, 79617964.CrossRefGoogle ScholarPubMed
Tauck, D.L., Frosch, M.P. & Lipton, S.A. (1988). Characterization of GABA- and glycine-induced currents in solitary retinal ganglion cells. Neuroscience 27, 193203.CrossRefGoogle Scholar
VAN Gelder, R.N., Von Zastrow, M.E., Yool, A., Dement, W.C., Barchas, J.D. & Eberwine, J.H. (1990). Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proceedings of the National Academy of Sciences of the U. S. A. 87, 16631667.CrossRefGoogle ScholarPubMed
Vardi, N., Masarachia, P. & Sterling, P. (1992). Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina. Journal of Comparative Neurology 320, 394397.CrossRefGoogle ScholarPubMed
Verdoorn, T.A., Draguhn, A., Ymer, S., Seeburg, P.H. & Sakmann, B. (1990). Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4, 919928.CrossRefGoogle ScholarPubMed
Veruki, M.L. & Yeh, H.H. (1989). GABA-activated currents in rat retinal ganglion cells. Society for Neuroscience Abstracts 15, 924.Google Scholar
Veruki, M.L. & Yeh, H.H. (1992). Vasoactive intestinal polypeptide modulates GABAA receptor function in bipolar cells and ganglion cells of the rat retina. Journal of Neurophysiology 67, 791797.CrossRefGoogle ScholarPubMed
Veruki, M.L. & Yeh, H.H. (1993). Modulation of GABAA receptor function by VIP in retinal ganglion cells: Involvement of a G protein. Investigative Ophthalmology and Visual Science (Abstract) 34, 1293.Google Scholar
Wässle, H., Yamashita, M., Greferath, U., GrÜnert, U. & Müller, F. (1991). The rod bipolar cell of the mammalian retina. Visual Neuroscience 7, 99112.CrossRefGoogle ScholarPubMed
Wilson-Shaw, D., Robinson, M., Gabarana, C., Siegel, R.E. & Sikela, J. (1991). A novel γ subunit of the GABAA receptor identified using the polymerase chain reaction. FEBS Letters 284, 211215.CrossRefGoogle ScholarPubMed
Yang, C.-Y., Lin, Z.-S. & Yazulla, S. (1992). Localization of GABAA receptor subtypes in the tiger salamander retina. Visual Neuroscience 8, 5764.CrossRefGoogle ScholarPubMed
Yazulla, S., Studholme, K.M., Victoria, J. & De Blas, A.L. (1989). Immunocytochemical localization of GABAa receptors in goldfish and chicken retinas. Journal of Comparative Neurology 280, 1526.CrossRefGoogle ScholarPubMed
Yeh, H.H., Lee, M.B. & Cheun, J.E. (1990). Properties of GABA-activated whole-cell currents in bipolar cells of the rat retina. Visual Neuroscience 4, 349357.CrossRefGoogle ScholarPubMed
Ymer, S., Draguhn, A., Kohler, M., Schofield, P.R. & Seeburg, P.H. (1989 a). Sequence and expression of a novel GABAA receptor α subunit. FEBS Letters 258, 119122.CrossRefGoogle ScholarPubMed
Ymer, S., Schofield, P.R., Draguhn, A., Werner, P., Kohler, M. & Seeburg, P.H. (1989 b). GABAA receptor beta subunit heterogeneity: Functional expression of cloned cDNAs. EMBO Journal 8, 16651670.CrossRefGoogle ScholarPubMed
Zhang, D. & Yeh, H.H. (1991). Protein kinase C-like immunoreactivity in rod bipolar cells of the rat retina: A developmental study. Visual Neuroscience 6, 429437.CrossRefGoogle ScholarPubMed