Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-13T08:21:41.619Z Has data issue: false hasContentIssue false

Expression and cellular localization of substance P/neurokinin A and neurokinin B mRNAs in the rat retina

Published online by Cambridge University Press:  02 June 2009

Nicholas C. Brecha
Affiliation:
Department of Medicine, UCLA School of Medicine, Los Angeles Department of Anatomy and Cell Biology, UCLA School of Medicine, Los Angeles Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles Brain Research Institute, UCLA School of Medicine, Los Angeles Center for Ulcer Research and Education, UCLA School of Medicine and VAMC-West Los Angeles, Los Angeles
Catia Sternini
Affiliation:
Department of Medicine, UCLA School of Medicine, Los Angeles Brain Research Institute, UCLA School of Medicine, Los Angeles Center for Ulcer Research and Education, UCLA School of Medicine and VAMC-West Los Angeles, Los Angeles
Karl Anderson
Affiliation:
Department of Medicine, UCLA School of Medicine, Los Angeles Center for Ulcer Research and Education, UCLA School of Medicine and VAMC-West Los Angeles, Los Angeles
James E. Krause
Affiliation:
Department of Anatomy and Neurobiology, Washington University, St. Louis

Abstract

The mammalian tachykinin peptides, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB) are encoded by distinct mRNAs derived from separate preprotachykinin (PPT) genes. The SP/NKA-encoding PPT gene generates three mRNAs by alternative RNA processing: α-PPT mRNA, which encodes SP only, and β- and γ-PPT mRNAs, which encode both SP and NKA. The NKB-encoding PPT gene generates mRNAs that produce NKB. The distribution and cellular localization of SP, NKA and NKB mRNAs in the rat retina were studied by RNA blot and in situ hybridization techniques. Blot hybridization analysis of retinal RNA extracts with [32P]-labeled RNA probes complementary to SP/NKA and NKB mRNAs demonstrated single bands of hybridization at 1300 and 900 bases, respectively. Solution hybridization-nuclease protection experiments showed multiple SP/NKA-encoding transcripts with relative levels of ρ-PPT mRNA > β-PPT mRNA ≫ α-PPT mRNA. In situ hybridization histochemistry with [35S]-labeled antisense RNAs demonstrated thatSP/NKA-encoding transcripts are expressed in small-to-medium somata located in the proximal inner nuclear, inner plexiform, and ganglion cell layers, whereas NKB-encoding transcripts are expressed in small-to-medium somata located only in the ganglion cell layer. In this layer, cells containing NKB mRNAs are more numerous than those containing SP/NKA mRNAs. Only background labeling was observed in sections incubated with sense RNA probes, pretreated with RNase A prior to hybridization or incubated in hybridization buffer without the labeled probe. Immunohistochemical studies with a monoclonal antibody directed to the conserved COOH-terminal sequence of the tachykinin peptides revealed tachykinin-like immunoreactive somata with similar size and distribution to those containing SP/NKA- and NKB-encoding transcripts. These results indicate that both SP/NKA and NKB mRNAs are present in the rat retina and that the PPT genes are differentially expressed in specific cell populations. The size and distribution of these cells suggest that they are amacrine and displaced amacrine cells, however, the possibility that tachykinins are present also in ganglion cells in the rat retina cannot be ruled out.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bonner, T.I., Affolter, H-U., Young, A.C. & Young, W.S., III. (1987). A cDNA encoding the precursor of the rat neuropeptide, neurokinin B. Molecular Brain Research 2, 243249.CrossRefGoogle Scholar
Brecha, N. (1983). Retinal neurotransmitters: histochemical and biochemical studies. In Chemical Neuroanatomy, ed. Emson, P.C., pp. 85129. New York: Raven Press.Google Scholar
Brecha, N., Johnson, D., Bolz, J., Sharma, S., Parnavelas, J.G. & Lieberman, A.R. (1987). Substance P-immunoreactive retinal ganglion cells and their central axon terminals in the rabbit. Nature (London) 327, 155158.CrossRefGoogle ScholarPubMed
Brecha, N., Sternini, C., Anderson, K. & Krause, J.E. (1988). Cellular localization of substance P/neurokinin A and neurokinin B mRNAs in the rat retina. Society for Neuroscience Abstracts 14, 880.Google Scholar
Brecha, N. & Sternini, C. (1989). Expression of tachykinin peptides in the mammalian retina. In Neurobiology of the Inner Retina, ed. Weiler, R. & Osborne, N.N., pp. 261274. New York: Springer-Verlag.CrossRefGoogle Scholar
Chang, M.M., Leeman, S.E. & Niall, H.D. (1971). Amino-acid sequence of substance P. Nature New Biology 232, 8687.CrossRefGoogle ScholarPubMed
Chirgwin, J.M., Przybyla, A.E., Macdonald, R.J. & Rutter, W.J. (1979). Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18, 52945299.CrossRefGoogle ScholarPubMed
Cox, K.H., Deleon, D.V., Angerer, L.M. & Angerer, R.C. (1984). Detection of mRNAs in sea urchin by in situ hybridization using asymmetric RNA probes. Developmental Biology 101, 485502.CrossRefGoogle ScholarPubMed
Cuello, A.C., Galfre, G. & Milstein, C. (1979). Detection of substance P in the central nervous system by a monoclonal antibody. Proceedings of National Academy of Sciences of the U.S.A. 76, 35323536.CrossRefGoogle ScholarPubMed
Deacon, C.F., Agoston, D.V., Nau, R. & Conlon, J.M. (1987). Conversion of neuropeptide K to neurokinin A and vesicular colocalization of neurokinin A and substance P in neurons of the guinea pig small intestine. Journal of Neurochemistry 48, 141146.CrossRefGoogle ScholarPubMed
Denny, P., Hamid, Q., Krause, J.E., Polak, J.M. & Legon, S. (1988). Oligo-riboprobes. Tools for in situ hybridisation. Histochemistry 89, 481483.CrossRefGoogle ScholarPubMed
Dick, E. & Miller, R.F. (1981). Peptides influence retinal ganglion cells. Neuroscience Letters 26, 131135.CrossRefGoogle ScholarPubMed
Ehinger, B. & Dowling, J.E. (1987). Retinal neurocircuitry and transmission. In Handbook of Chemical Neuroanatomy, Vol. 5, Integrated Systems of the CNS, Part I, ed. Björklund, A., Hökfelt, T. & Swanson, L.W., pp. 389446. Amsterdam: Elsevier Science Publishers.Google Scholar
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). Distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Gallus gallus). Journal of Comparative Neurology 266, 220233.CrossRefGoogle ScholarPubMed
Eskay, R.L., Long, R.T. & Iuvone, P.M. (1980). Evidence that TRH, somatostatin, and substance P are present in neurosecretory elements of the vertebrate retina. Brain Research 196, 554559.CrossRefGoogle ScholarPubMed
Eskay, R.L., Furness, J.F. & Long, R.T. (1981). Substance P activity in the bullfrog retina: localization and identification in several vertebrate species. Science 212, 10491051.CrossRefGoogle ScholarPubMed
Fukuda, M., Kuwayama, Y., Shiosaka, S., Ishimoto, I., Shimizu, Y., Takagi, H., Inagaki, S., Sakanaka, M., Semba, E., Takatsuki, K. & Tohyama, M. (1981). Demonstration of a substance P-like immunoreactivity in retinal cells of the rat. Neuroscience Letters 23, 239242.CrossRefGoogle ScholarPubMed
Glickman, R.D., Adolph, A.R. & Dowling, J.E. (1982). Inner plexiform circuits in the carp retina: effects of cholinergic agonists, GABA, and substance P on the ganglion cells. Brain Research 234, 8199.CrossRefGoogle ScholarPubMed
Goedert, M. & Hunt, S.P. (1987). The cellular localization of preprotachykinin A messenger RNA in the bovine nervous system. Neuroscience 22, 983992.CrossRefGoogle ScholarPubMed
Harlan, R.E., Garcia, M.M. & Krause, I.E. (1989). Cellular localization of substance P/neurokinin A-encoding preprotachykinin mRNA in the female rat brain. Journal of Comparative Neurology 287, 179221.CrossRefGoogle ScholarPubMed
Harmar, A.J., Armstrong, A., Pascall, J.C., Chapman, K., Rosie, R., Curtis, A., Going, J., Edwards, C.R.W. & Fink, G. (1986). cDNA sequence of human β-preprotachykinin, the common precursor to substance P and neurokinin A. FEBS Letters 208, 6772.CrossRefGoogle ScholarPubMed
Henry, J.L. (1987). Substance P and Neurokinins. New York: Springer-Verlag.CrossRefGoogle Scholar
Kage, R., Mcgregor, G.P., Thim, L. & Conlon, J.M. (1988). Neuropeptide-γ: a peptide isolated from rabbit intestine that is derived from λ-preprotachykinin. Journal of Neurochemistry 50, 14121417.CrossRefGoogle Scholar
Kanazawa, I. & Jessell, T. (1976). Post mortem changes and regional distribution of substance P in the rat and mouse nervous system. Brain Research 117, 362367.CrossRefGoogle ScholarPubMed
Kanazawa, I., Ogawa, T., Kimura, S. & Munekata, E. (1984). Regional distribution of substance P, neurokinin α, and neurokinin β in the rat central nervous system. Neuroscience Research 2, 111120.CrossRefGoogle ScholarPubMed
Kangawa, K., Minamino, N., Fukuda, A. & Matsuo, H. (1983). Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord. Biochemical and Biophysical Research Communications 114, 533540.CrossRefGoogle ScholarPubMed
Kawaguchi, Y., Hoshimura, M., Nawa, H. & Nakanishi, S. (1986). Sequence analysis of cloned cDNA for rat substance P precursor: existence of a third substance P precursor. Biochemical and Biophysical Research Communications 139, 10401046.CrossRefGoogle ScholarPubMed
Kimura, S., Okada, M., Sugita, Y., Kanazawa, I. & Munekata, E. (1983). Novel neuropeptides, neurokimn α and β, isolated from porcine spinal cord. Proceedings of Japanese Academy, Series B 59, 101104.CrossRefGoogle Scholar
Kotani, H., Hoshimura, M., Nawa, H. & Nakanishi, S. (1986). Structure and gene organization of bovine neuromedin K precursor. Proceedings of National Academy of Sciences of the U.S.A. 83, 70747078.CrossRefGoogle ScholarPubMed
Krause, J.E., Chirgwin, J.M., Carter, M.S., Xu, Z.S. & Hershey, A.D. (1987). Three rat preprotachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proceedings of National Academy of Sciences of the U.S.A. 84, 881885.CrossRefGoogle ScholarPubMed
Krause, J.E., Cremins, J.D., Carter, M.S., Brown, E.R. & Macdonald, M.R. (1989). Solution hybridization-nuclease protection assays for the sensitive detection of differentially spliced substance P- and neurokinin A-encoding messenger RNAs. Methods in Enzymology 168, 634652.CrossRefGoogle Scholar
Kuljis, R.O., Krause, J.E. & Karten, H.J. (1984). Peptide-like immunoreactivity in anuran optic nerve fibers. Journal of Comparative Neurology 226, 222237.CrossRefGoogle ScholarPubMed
Kuljis, R.O. & Karten, H.J. (1986). Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog (Rana pipiens). Proceedings of National Academy of Sciences of the U.S.A. 83, 57365740.CrossRefGoogle ScholarPubMed
Macdonald, M.R., McCourt, D.W. & Krause, J.E. (1988). Post-translational processing of α-, β- and γ-preprotachykinin: cell-free translational and early posttranslational processing events. Journal Biological Chemistry 263, 1517615183.CrossRefGoogle ScholarPubMed
Maggio, J.E. (1988). Tachykinins. Annual Review of Neuroscience 11, 1328.CrossRefGoogle ScholarPubMed
Mantyh, P., Goedert, M., Hunt, S.P. & Brecha, N.C. (1985). Functional neurotensin and substance P receptors are present in the retina. Investigative Ophthalmology and Visual Science (Suppl.) 26, 277.Google Scholar
Mantyh, P.W., Gates, T., Mantyh, C.R. & Maggio, J.E. (1989). Autoradiographic localization and characterization of tachykinin receptor binding sites in the rat brain and peripheral tissues. Journal of Neuroscience 9, 258279.CrossRefGoogle ScholarPubMed
Minamino, N., Kangawa, K., Fukuda, A. & Matsuo, H. (1984 a). Neuromedin L: a novel mammalian tachykinin identified in porcine spinal cord. Neuropeptides 4, 157166.CrossRefGoogle ScholarPubMed
Minamino, N., Masuda, H., Kangawa, K. & Matsuo, H. (1984 b). Regional distribution of neuromedin K and neuromedin L in rat brain and spinal cord. Biochemical and Biophysical Research Communications 124, 731738.CrossRefGoogle ScholarPubMed
Nakagawa, S., Hasegawa, Y., Kubozono, T. & Takumi, K. (1988). Substance P-like immunoreactive retinal terminals found in two ret-inorecipient areas of the Japanese monkey. Neuroscience Letters 93, 3237.CrossRefGoogle ScholarPubMed
Nawa, H., Hirose, T., Takashima, H., Inayama, S. & Nakanishi, S. (1983). Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursors. Nature (London) 306, 3236.CrossRefGoogle Scholar
Nawa, H., Kotani, H. & Nakanishi, S. (1984). Tissue specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature (London) 312, 729734.CrossRefGoogle ScholarPubMed
Osborne, N.N., Nicholas, D.A., Dockray, G.J. & Cuello, A.C. (1982). Cholecystokinin and substance P immunoreactivity in retinas of rats, frogs, lizards, and chicks. Experimental Eye Research 34, 639649.CrossRefGoogle ScholarPubMed
Osborne, N.N. (1984). Substance P in the bovine retina: localization, identification, release, uptake, and receptor analysis. Journal of Physiology (London) 349, 8393.CrossRefGoogle ScholarPubMed
Osborne, N.N. & Perry, V.H. (1985). Effect of neonatal optic nerve transection on some classes of amacrine cells in the rat retina. Brain Research 343, 230235.CrossRefGoogle ScholarPubMed
Perry, V.H. (1981). Evidence for an amacrine cell system in the ganglion cell layer of the rat retina. Neuroscience 6, 931944.CrossRefGoogle ScholarPubMed
Perry, V.H. (1982). The ganglion cell layer of the mammalian retina. In Progress in Retinal Research, Vol. 1., ed. Osborne, N. & Chader, G., pp. 5380. Oxford, England: Pergamon Press.Google Scholar
Ramón, Y Cajal S. (1893). La retine des vertebres. La Cellule 9, 17257.Google Scholar
Sternini, C., Anderson, K., Frantz, G., Krause, J.E. & Breacha, N. (1989). Expression of substance P/neurokinin A-encoding preprotachykinin mRNAs in the rat enteric nervous system. Gastroenterology 97, 348356.CrossRefGoogle ScholarPubMed
Tatemoto, K., Lundberg, J.M., Jornvall, H. & Mutt, V. (1985). Neuropeptide K: isolation, structure, and biological activities of a novel brain tachykinin. Biochemical and Biophysical Research Communications 128, 947953.CrossRefGoogle ScholarPubMed
Thomas, P.S. (1980). Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proceedings of National Academy of Sciences of the U.S.A. 77, 52015205.CrossRefGoogle ScholarPubMed
Warden, M.K. & Young, W.S., III. (1988). Distribution of cells containing mRNAs encoding substance P and neurokinin B in the ratcentral nervous system. Journal of Comparative Neurology 272, 90113.CrossRefGoogle ScholarPubMed