Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T00:25:15.888Z Has data issue: false hasContentIssue false

Effects of neurotensin on visual neurons in the superficial laminae of the hamster's superior colliculus

Published online by Cambridge University Press:  02 June 2009

Yi Zhang
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo
Richard D.
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo
Carol A. Bennett-Clarke
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo
Robert W. Rhoades
Affiliation:
Department of Anatomy and Neurobiology, Medical College of Ohio, Toledo

Abstract

Autoradiography with 125I-neurotensin in normal and enucleated hamsters was used to define the distribution of receptors for this peptide in the superficial layers of the superior colliculus (SC). Neurotensin binding sites were densely distributed in the stratum griseum superficiale (SGS), and results from the enucleated animals indicated that they were not located on retinal axons. The effects of neurotensin on individual superficial layer cells were tested in single-unit recording experiments. Neurotensin was delivered via micropressure ejection during visual stimulation (n = 75 cells), or during electrical stimulation of either the optic chiasm (OX; n = 47 cells) or visual cortex (CTX; n = 29 cells). In comparison with control values, application of neurotensin decreased visual responses of all SC cells tested to 54.1 ± 34.9% (mean ± standard deviation; range of decrement 7.5 to 100%; nine cells showed no effect or an increase in visual activity, which for four of these was ≥30%). Neurotensin application also reduced responses to electrical stimulation of either OX or CTX, respectively, to 65.8 ± 36.5% of control values (range of decrement 2.6 to 97.4%; 12 neurons showed a weak increment ≤ 30%) and 68.0 ± 38.5% (range of decrement 3.3 to 100%; five cells showed no effect or an increment, in one case ≥ 30%). Of the 25 neurons tested with both OX and CTX stimulation, the correlation of evoked response suppression by neurotensin was highly significant (r = 0.70; P < 0.001). This suggests that the suppressive effects of neurotensin were common to both pathways. To test whether the inhibitory effects of neurotensin were presynaptic or postsynaptic, Mg2+ ions were ejected iontophoretically to abolish synaptic responses, and the neurons (n = 16) were activated by iontophoresis of glutamate and then tested with neurotensin. Neurotensin reduced the glutamate-evoked responses to an average 59.3 ± 37.9% of control values (range 2.3 to 92.5%; one cell showed an increment >30%). This result suggests that the site of action of neurotensin is most likely postsynaptic.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, G.V. & Cechetto, D.F. (1991). Neurotensinergic modulation of neuronal responses in the lateral hypothalamic area (LHA) to stimulation of cardiovascular sites in the insular cortex (IC). Society for Neuroscience Abstracts 17, 998.Google Scholar
Andrade, R. & Aghajanian, G.K. (1981). Neurotensin selectively activates dopaminergic neurons in the substantia nigra. Society for Neuroscience Abstracts 7, 537.Google Scholar
Audinat, E., Hermel, J.M. & Crepel, F. (1989). Neurotensin-induced excitation of neurons of the rat's frontal cortex studied intracellularly in vitro. Experimental Brain Research 78, 358368.CrossRefGoogle ScholarPubMed
Baldino, F. Jr. & Wolfson, B. (1985). Postsynaptic actions of neurotensin on preoptic-anterior hypothalamic neurons in vitro. Brain Research 325, 161170.CrossRefGoogle ScholarPubMed
Behbehani, M.M., Shipley, M.T. & McLean, J.H. (1987). Effect of neurotensin on neurons in the periaqueductal gray: An in vitro study. Journal of Neuroscience 7, 20352040.CrossRefGoogle ScholarPubMed
Besson, J., Sarrieau, A., Vial, M., Marie, J.-C., Rosselin, G. & Rostene, W. (1986). Characterization and autoradiographic distribution of vasoactive intestinal peptide binding sites in the rat central nervous system. Brain Research 398, 329336.CrossRefGoogle ScholarPubMed
Chalupa, L.M. (1984). Visual physiology of the mammalian superior colliculus. In Comparative Neurology of the Optic Tectum, ed. Vanegas, H., pp. 775818. New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
Chalupa, L.M. & Rhoades, R.W. (1977). Responses of visual somatosensory, and auditory neurons in the golden hamster's superior colliculus. Journal of Physiology (London) 270, 595626.CrossRefGoogle ScholarPubMed
Desouza, E.B., Insel, T.R., Perrin, M.H., Rivier, J., Vale, W.W. & Kuhar, M.J. (1985). Corticotropin-releasing factor receptors are widely distributed within the rat central nervous system: An auto-radiographic study. Journal of Neuroscience 5, 31893202.CrossRefGoogle Scholar
Farkas, R.H., Nakajima, S. & Nakajima, Y. (1994). Neurotensin excites basal forebrain cholinergic neurons: Ionic and signal-transduction mechanisms. Proceedings of the National Academy of Sciences of the U.S.A. 91, 28532857.CrossRefGoogle ScholarPubMed
Freund-Mercier, M.J., Stoeckel, M.E., Palacios, J.M., Pazos, A., Reichhart, J.M., Porte, A. & Richard, Ph. (1987). Pharmacological characteristics and anatomical distribution of [3H] oxytocin binding sites in the wistar rat brain studied by autoradiography. Neuroscience 20, 599614.CrossRefGoogle ScholarPubMed
Getz, R., Merchant, C., Rosenstein, J., Merali, Z. & Moody, T.W. (1992). Ontogeny of bombesin/gastrin-releasing peptide binding sites in rat brain. Molecular and Cellular Neuroscience 3, 162170.CrossRefGoogle ScholarPubMed
Herbison, A.E., Hubbard, J.I. & Sirett, N.E. (1986). Neurotensin excites neurons in the arcuate nucleus of the rat hypothalamus in vitro. Brain Research 364, 391395.CrossRefGoogle ScholarPubMed
Hori, T., Yamasaki, M., Kiyohara, T. & Shibata, M. (1986). Responses of preoptic thermosensitive neurons to poikilothermia-inducing peptides—bombesin and neurotensin. Pflügers Achiv European Journal of Physiology 407, 558560.CrossRefGoogle ScholarPubMed
Huang, X., Mooney, R.D. & Rhoades, R.W. (1993). Effects of serotonin (5-HT) upon retinotectal, corticotectal, and glutamate-induced activity in the superior colliculus of the hamster. Journal of Neurophysiology 70, 723732.CrossRefGoogle ScholarPubMed
Huerta, M.F. & Harting, J.K. (1984). The mammalian superior colliculus: Studies of its morphology and connections. In Comparative Neurology of the Optic Tectum, ed. Vanegas, H., pp. 687725. New York: Plenum Publishing Corporation.CrossRefGoogle Scholar
Jiang, Z.G., Pessia, M. & North, R.A. (1992). Neurotensin excites dopaminergic neurons in rat ventral tegmental area (VTA) by reducing potassium and increasing sodium conductances. Society for Neuroscience Abstracts 18, 272.Google Scholar
Keegan, K.D., Woodruff, G.N. & Pinnock, R.D. (1992). Sensitivity of the neurotensin response of rat substantia nigra neurones in vitro to toxins and ION channel blockers. Society for Neuroscience Abstracts 18, 763.Google Scholar
Kirkpatrick, K. & Bourque, C.W. (1991). Effects of neurotensin on rat magnocellular neurosecretory cells (MNCs) in vitro. Society for Neuroscience Abstracts 17, 1188.Google Scholar
Loup, F., Tribollet, E., Dubois-Dauphin, M. & Dreifuss, J.J. (1991). Localization of high-affinity binding sites of oxytocin and vasopressin in the human brain. An autoradiographic study. Brain Research 555, 220232.CrossRefGoogle Scholar
Manaker, S., Winokur, A., Rostene, W.H. & Rainbow, T.C. (1985). Autoradiographic localization of thyrotropin-releasing hormone receptors in the rat central nervous system. Journal of Neuroscience 5, 167174.CrossRefGoogle ScholarPubMed
Marwaha, J., Hoffer, B. & Freedman, R. (1980). Electrophysiological actions of neurotensin in rat cerebellum. Regulatory Peptides 1, 115125.CrossRefGoogle ScholarPubMed
Mendelsohn, F.A.O., Quirion, R., Saavedra, J.M., Aguilera, G. & Catt, K.J. (1984). Autoradiographic localization of angiotensin II receptors in rat brain. Proceedings of the National Academy of Sciences of the U.S.A. 81, 15751579.CrossRefGoogle ScholarPubMed
Miletic, V. & Randic, M. (1979). Neurotensin excites cat spinal neurons located in laminae I–III. Brain Research 169, 600604.CrossRefGoogle ScholarPubMed
Mooney, R.D., Bennett-Clarke, C., Chiaia, N.L., Sahibzada, N. & Rhoades, R.W. (1990). Organization and actions of the noradrenergic input to the hamster's superior colliculus. Journal of Comparative Neurology 292, 214230.CrossRefGoogle Scholar
Mooney, R.D., Klein, B.G. & Rhoades, R.W. (1985). Correlations between the structural and functional characteristics of neurons in the superficial laminae of the hamster's superior colliculus. Journal of Neuroscience 5, 29893009.CrossRefGoogle ScholarPubMed
Mooney, R.D., SHI, M.-Y. & Rhoades, R.W. (1994 a). Modulation of retinotectal transmission by presynaptic 5-HT1B receptors in the superior colliculus of the adult hamster. Journal of Neurophysiology 72, 313.CrossRefGoogle ScholarPubMed
Mooney, R.D., Zhang, Y. & Rhoades, R.W. (1994 b). Effects of angiotensin 11 on visual neurons in the superficial laminae of the hamster's superior colliculus. Visual Neuroscience 11, 11631173.CrossRefGoogle ScholarPubMed
Moyse, E., RostÉNe, W., Vial, M., Leonard, K., Mazella, J., Kitabgi, P., Vincent, J.-P. & Beaudet, A. (1987). Distribution of neurotensin binding sites in rat brain: A light microscopic radioautographic study using monoiodo-[125l] tyr3-neurotensin. Neuroscience 22, 525536.CrossRefGoogle Scholar
Reader, T.A. & Briere, R. (1982). Selective noradrenergic denervation and 3H-prazosin binding sites in rat neocortex. Brain Research Bulletin 10, 155158.CrossRefGoogle Scholar
Sato, H. & Kayama, Y. (1983). Effects of noradrenaline applied iontophoretically on rat superior collicular neurons. Brain Research Bulletin 10, 453457.CrossRefGoogle ScholarPubMed
Seutin, V., Verbanck, P., Massotte, L. & Dresse, A. (1989). Galanin decreases the activity of locus coeruleus neurons in vitro. European Journal of Pharmacology 164, 373376.CrossRefGoogle ScholarPubMed
Shaffer, M.M. & Moody, T.W. (1986). Autoradiographic visualization of CNS receptors for vasoactive intestinal peptide. Peptides 7, 283288.CrossRefGoogle ScholarPubMed
Shi, W.-X. & Bunney, B.S. (1992). Actions of neurotensin: A review of electrophysiological studies. Annals of the New York Academy of Sciences 668, 129145.CrossRefGoogle ScholarPubMed
Skofitsch, G., Sills, M.A. & Jacobowitz, D.M. (1986). Autoradiographic distribution of 125I-galanin binding sites in the rat central nervous system. Peptides 7, 10291042.CrossRefGoogle ScholarPubMed
Sparks, D.L. & Hartwich-Young, R. (1989). The deep layers of the superior colliculus. In The Neurobiology of Saccadic Eye Movements Vol. 3: Reviews of Oculomotor Research, ed. Wurtz, R.H. & Goldberg, M.E. pp. 213255. Amsterdam: Elsevier.Google Scholar
Stanzione, P. & Zieglgansberger, W. (1983). Action of neurotensin on spinal cord neurons in the rat. Brain Research 268, 111118.CrossRefGoogle ScholarPubMed
Stein, B.E., Spencer, R.F. & Edwards, S.B. (1982). Efferent projections of the neonatal superior colliculus: Extraoculomotor-related brain stem structures. Brain Research 239, 1728.CrossRefGoogle ScholarPubMed
Stowe, Z.N. & Nemeroff, C.B. (1991). The electrophysiological actions of neurotensin in the central nervous system. Life Science 49, 9871002.CrossRefGoogle ScholarPubMed
Straschill, M. & Perwein, J. (1971). Effect of iontophoretically applied biogenic amines and of cholinomimetic substances upon the activity of neurons in the superior colliculus and mesencephalic reticular formation of the ct. Pflugers Archives 324, 4355.CrossRefGoogle Scholar
Tiao, Y.-C. & Blakemore, C. (1976). Functional organization in the superior colliculus of the golden hamster. Journal of Comparative Neurology 168, 483504.Google ScholarPubMed
Young, W.S. III., Uhi, G.R. & Kuhar, M.J. (1978). Iontophoresis of neurotensin in the area of the locus coeruleus. Brain Research 150, 431435.CrossRefGoogle ScholarPubMed
Young, W.S. III. & Kuhar, M.J. (1979). Neurotensin receptors: Autoradiographic localization in rat CNS. European Journal of Pharmacology 59, 161163.CrossRefGoogle ScholarPubMed