Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T18:01:54.823Z Has data issue: false hasContentIssue false

Effects of mGluR6-deficiency on photoreceptor ribbon synapse formation: Comparison of electron microscopic analysis of serial sections with random sections

Published online by Cambridge University Press:  19 November 2013

YOSHIHIKO TSUKAMOTO*
Affiliation:
Studio Retina, Satonaka, Nishinomiya, Hyogo Department of Biology, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
NAOKO OMI*
Affiliation:
Studio Retina, Satonaka, Nishinomiya, Hyogo

Abstract

This study examined the effects of metabotropic glutamate receptor 6 (mGluR6) deficiency on ribbon synapse formation in rod spherules and cone pedicles using serial-section electron microscopy. In a wild-type (WT) mouse, only 3% of spherules had one invaginating bipolar dendrite (1B-type) and 97% of spherules were 2B-type. In contrast, in an mGluR6-knockout (KO) mouse, 29% of spherules were 1B-type and 71% of spherules were 2B-type. Spherules without bipolar invagination were not observed in either genotype. The single invaginating dendrites in 1B-type spherules were larger and the surface areas of synaptic ribbons were 23% smaller in the mGluR6-KO mouse than in the WT mouse. In cones, the number of invaginating bipolar dendrites decreased from 12 in the WT mouse to 9.5 in the mGluR6-KO mouse. This decrease correlated with a decrease in the number of cone synaptic ribbons from 10 in the WT mouse to 8 in the mGluR6-KO mouse. The mGluR6-KO phenotype showed negative effects on ribbon synapse formation. This negativity was similar to those in mGluR6-nob4, Gβ3-KO, Gβ5-KO, and RGS-7:RGS-11 double-KO mice, but the detailed manners and degrees of alterations appeared to vary depending on different missing components. Two published morphological assessments of the RGS-7:RGS-11 double-KO phenotype reported conflicting data; therefore, we tested the statistical techniques used in the two analyses. One statistical evaluation measure was effective in identifying a significant difference in structure between the mutant and WT phenotypes, whereas the other measure was ineffective. Conventional random section analysis using the effective measure provided sufficient data for a statistical test of the occurrence of structural changes. However, serial section analysis was required to determine the absolute numbers of ribbons and invaginating dendrites and to estimate structural parameters such as ribbon surface area.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, G.R., Posokhova, E. & Martemyanov, K.A. (2009). The R7 RGS protein family: Multi-subunit regulators of neuronal G protein signaling. Cell Biochemistry and Biophysics 54, 3346.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Kolb, H. (1973). The connections between bipolar cells and photoreceptors in the retina of the domestic cat. The Journal of Comparative Neurology 148, 91114.CrossRefGoogle ScholarPubMed
Cao, Y., Masuho, I., Okawa, H., Xie, K., Asami, J., Kammermeier, P.J., Maddox, D.M., Furukawa, T., Inoue, T., Sampath, A.P. & Martemyanov, K.A. (2009). Retina-specific GTPase accelerator RGS11/G beta 5S/R9AP is a constitutive heterotrimer selectively targeted to mGluR6 in ON-bipolar neurons. The Journal of Neuroscience 29, 93019313.CrossRefGoogle ScholarPubMed
Cao, Y., Pahlberg, J., Sarria, I., Kamasawa, N., Sampath, A.P. & Martemyanov, K.A. (2012). Regulators of G protein signaling RGS7 and RGS11 determine the onset of the light response in ON bipolar neurons. Proceedings of the National Academy of Sciences of the United States of America 109, 79057910.CrossRefGoogle ScholarPubMed
Dhingra, A., Ramakrishnan, H., Neinstein, A., Fina, M.E., Xu, Y., Li, J., Chung, D.C., Lyubarsky, A. & Vardi, N. (2012). Gbeta3 is required for normal light ON responses and synaptic maintenance. The Journal of Neuroscience 32, 1134311355.CrossRefGoogle ScholarPubMed
Haverkamp, S., Michalakis, S., Claes, E., Seeliger, M.W., Humphries, P., Biel, M. & Feigenspan, A. (2006). Synaptic plasticity in CNGA3(-/-) mice: Cone bipolar cells react on the missing cone input and form ectopic synapses with rods. The Journal of Neuroscience 26, 52485255.CrossRefGoogle ScholarPubMed
Ishii, M., Morigiwa, K., Takao, M., Nakanishi, S., Fukuda, Y., Mimura, O. & Tsukamoto, Y. (2009). Ectopic synaptic ribbons in dendrites of mouse retinal ON- and OFF-bipolar cells. Cell and Tissue Research 338, 355375.CrossRefGoogle ScholarPubMed
Keeley, P.W. & Reese, B.E. (2010). Role of afferents in the differentiation of bipolar cells in the mouse retina. The Journal of Neuroscience 30, 16771685.CrossRefGoogle ScholarPubMed
Linberg, K., Cuenca, N., Ahnelt, P., Fisher, S. & Kolb, H. (2001). Comparative anatomy of major retinal pathways in the eyes of nocturnal and diurnal mammals. Progress in Brain Research 131, 2752.CrossRefGoogle ScholarPubMed
Maddox, D.M., Vessey, K.A., Yarbrough, G.L., Invergo, B.M., Cantrell, D.R., Inayat, S., Balannik, V., Hicks, W.L., Hawes, N.L., Byers, S., Smith, R.S., Hurd, R., Howell, D., Gregg, R.G., Chang, B., Naggert, J.K., Troy, J.B., Pinto, L.H., Nishina, P.M. & McCall, M.A. (2008). Allelic variance between GRM6 mutants, Grm6nob3 and Grm6nob4 results in differences in retinal ganglion cell visual responses. The Journal of Physiology 586, 44094424.CrossRefGoogle ScholarPubMed
Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., Sasaki, H., Hiroi, K., Nakamura, Y. & Shigemoto, R. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757765.CrossRefGoogle ScholarPubMed
Migdale, K., Herr, S., Klug, K., Ahmad, K., Linberg, K., Sterling, P. & Schein, S. (2003). Two ribbon synaptic units in rod photoreceptors of macaque, human, and cat. The Journal of Comparative Neurology 455, 100112.CrossRefGoogle ScholarPubMed
Omori, Y., Araki, F., Chaya, T., Kajimura, N., Irie, S., Terada, K., Muranishi, Y., Tsujii, T., Ueno, S., Koyasu, T., Tamaki, Y., Kondo, M., Amano, S. & Furukawa, T. (2012). Presynaptic dystroglycan-pikachurin complex regulates the proper synaptic connection between retinal photoreceptor and bipolar cells. The Journal of Neuroscience 32, 61266137.CrossRefGoogle ScholarPubMed
Peichl, L. & Gonzalez-Soriano, J. (1994). Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig. Visual Neuroscience 11, 501517.CrossRefGoogle ScholarPubMed
Pinto, L.H., Vitaterna, M.H., Shimomura, K., Siepka, S.M., Balannik, V., McDearmon, E.L., Omura, C., Lumayag, S., Invergo, B.M., Glawe, B., Cantrell, D.R., Inayat, S., Olvera, M.A., Vessey, K.A., McCall, M.A., Maddox, D., Morgans, C.W., Young, B., Pletcher, M.T., Mullins, R.F., Troy, J.B. & Takahashi, J.S. (2007). Generation, identification and functional characterization of the nob4 mutation of Grm6 in the mouse. Visual Neuroscience 24, 111123.CrossRefGoogle ScholarPubMed
Rao, A., Dallman, R., Henderson, S. & Chen, C.K. (2007). Gbeta5 is required for normal light responses and morphology of retinal ON-bipolar cells. The Journal of Neuroscience 27, 1419914204.CrossRefGoogle ScholarPubMed
Rao-Mirotznik, R., Harkins, A.B., Buchsbaum, G. & Sterling, P. (1995). Mammalian rod terminal: Architecture of a binary synapse. Neuron 14, 561569.CrossRefGoogle ScholarPubMed
Raven, M.A., Oh, E.C., Swaroop, A. & Reese, B.E. (2007). Afferent control of horizontal cell morphology revealed by genetic respecification of rods and cones. The Journal of Neuroscience 27, 35403547.CrossRefGoogle ScholarPubMed
Reese, B.E., Keeley, P.W., Lee, S.C. & Whitney, I.E. (2011). Developmental plasticity of dendritic morphology and the establishment of coverage and connectivity in the outer retina. Developmental Neurobiology 71, 12731285.CrossRefGoogle ScholarPubMed
Reese, B.E., Raven, M.A. & Stagg, S.B. (2005). Afferents and homotypic neighbors regulate horizontal cell morphology, connectivity, and retinal coverage. The Journal of Neuroscience 25, 21672175.CrossRefGoogle ScholarPubMed
Sato, S., Omori, Y., Katoh, K., Kondo, M., Kanagawa, M., Miyata, K., Funabiki, K., Koyasu, T., Kajimura, N., Miyoshi, T., Sawai, H., Kobayashi, K., Tani, A., Toda, T., Usukura, J., Tano, Y., Fujikado, T. & Furukawa, T. (2008). Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. Nature Neuroscience 11, 923931.CrossRefGoogle ScholarPubMed
Shim, H., Wang, C.T., Chen, Y.L., Chau, V.Q., Fu, K.G., Yang, J., McQuiston, A.R., Fisher, R.A. & Chen, C.K. (2012). Defective retinal depolarizing bipolar cells in regulators of G protein signaling (RGS) 7 and 11 double null mice. The Journal of Biological Chemistry 287, 1487314879.CrossRefGoogle ScholarPubMed
Strettoi, E. (2008). Mammalian rod pathways. In The Senses 1, Vision I, ed. Masland, R.H. & Albright, T.D., pp. 303311. Amsterdam: Academic Press/Elsevier.Google Scholar
Strettoi, E., Mears, A.J. & Swaroop, A. (2004). Recruitment of the rod pathway by cones in the absence of rods. The Journal of Neuroscience 24, 75767582.CrossRefGoogle ScholarPubMed
Tagawa, Y., Sawai, H., Ueda, Y., Tauchi, M. & Nakanishi, S. (1999). Immunohistological studies of metabotropic glutamate receptor subtype 6-deficient mice show no abnormality of retinal cell organization and ganglion cell maturation. The Journal of Neuroscience 19, 25682579.CrossRefGoogle ScholarPubMed
Tsukamoto, Y., Morigiwa, K., Ishii, M., Takao, M., Iwatsuki, K., Nakanishi, S. & Fukuda, Y. (2007). A novel connection between rods and ON cone bipolar cells revealed by ectopic metabotropic glutamate receptor 7 (mGluR7) in mGluR6-deficient mouse retinas. The Journal of Neuroscience 27, 62616267.CrossRefGoogle ScholarPubMed
Tsukamoto, Y., Morigiwa, K., Ueda, M. & Sterling, P. (2001). Microcircuits for night vision in mouse retina. The Journal of Neuroscience 21, 86168623.CrossRefGoogle ScholarPubMed
Tsukamoto, Y. & Omi, N. (2013). Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to all amacrine cells in the mouse retina. The Journal of Comparative Neurology 521, 35413555.CrossRefGoogle ScholarPubMed