Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T16:49:55.274Z Has data issue: false hasContentIssue false

The effect of chromatic and luminance information on reaction times

Published online by Cambridge University Press:  01 July 2010

BEATRIZ M. O’DONELL*
Affiliation:
Departamento de Luminotecnia Luz y Visión ¨Ing. Herberto C. Bühler¨, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina Instituto de Investigación en Luz, Ambiente y Visión (CONICET-UNT), San Miguel de Tucumán, Tucumán, Argentina
JOSE F. BARRAZA
Affiliation:
Departamento de Luminotecnia Luz y Visión ¨Ing. Herberto C. Bühler¨, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina Instituto de Investigación en Luz, Ambiente y Visión (CONICET-UNT), San Miguel de Tucumán, Tucumán, Argentina
ELISA M. COLOMBO
Affiliation:
Departamento de Luminotecnia Luz y Visión ¨Ing. Herberto C. Bühler¨, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina Instituto de Investigación en Luz, Ambiente y Visión (CONICET-UNT), San Miguel de Tucumán, Tucumán, Argentina
*
*Address correspondence and reprint requests to: Beatriz M. O’Donell, Departamento de Luminotecnia Luz y Visión ¨Ing. Herberto C. Bühler¨, Facultad de Ciencias Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, San Miguel de Tucumán, Argentina. E-mail: [email protected], [email protected]

Abstract

We present a series of experiments exploring the effect of chromaticity on reaction time (RT) for a variety of stimulus conditions, including chromatic and luminance contrast, luminance, and size. The chromaticity of these stimuli was varied along a series of vectors in color space that included the two chromatic-opponent-cone axes, a red–green (L–M) axis and a blue–yellow [S − (L + M)] axis, and intermediate noncardinal orientations, as well as the luminance axis (L + M). For Weber luminance contrasts above 10–20%, RTs tend to the same asymptote, irrespective of chromatic direction. At lower luminance contrast, the addition of chromatic information shortens the RT. RTs are strongly influenced by stimulus size when the chromatic stimulus is modulated along the [S − (L + M)] pathway and by stimulus size and adaptation luminance for the (L–M) pathway. RTs are independent of stimulus size for stimuli larger than 0.5 deg. Data are modeled with a modified version of Pieron’s formula with an exponent close to 2, in which the stimulus intensity term is replaced by a factor that considers the relative effects of chromatic and achromatic information, as indexed by the RMS (square-root of the cone contrast) value at isoluminance and the Weber luminance contrast, respectively. The parameters of the model reveal how RT is linked to stimulus size, chromatic channels, and adaptation luminance and how they can be interpreted in terms of two chromatic mechanisms. This equation predicts that, for isoluminance, RTs for a stimulus lying on the S-cone pathway are higher than those for a stimulus lying on the L–M-cone pathway, for a given RMS cone contrast. The equation also predicts an asymptotic trend to the RT for an achromatic stimulus when the luminance contrast is sufficiently large.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boyce, P.R. & Rea, M.S. (1987). Plateau and Escarpment: The Shape of Visual Performance. Proceedings of the 21st Session of the CIE, Venice, Italy.Google Scholar
Burkhardt, D.A., Gottesman, J. & Keenan, R.M. (1987). Sensory latency and reaction time: Dependence on contrast polarity and early linearity in human vision. Journal of the Optical Society of America 4, 530539.Google Scholar
Cao, D., Zele, A. & Pokorny, J. (2007). Linking impulse response functions to reaction time: Rod and cone reaction time data and a computational model. Vision Research 47, 10601074.CrossRefGoogle ScholarPubMed
Curcio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.I., Hurley, J.B., Klock, I.B. & Millam, A.H. (1990). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. Journal of the Comparative Neurology 312, 610624.CrossRefGoogle Scholar
Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. (1991). Human photoreceptor topography. Journal of the Comparative Neurology 292, 497523.CrossRefGoogle Scholar
Derrington, A., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanism in lateral geniculate nucleus of macaque. Journal of Physiology 357, 241265.CrossRefGoogle ScholarPubMed
Diaz, J.A., Jimenez del Barco, L., Jimenez, J.R. & Hita, E. (2001). Simple reaction time to chromatic changes along L&M-constant and S-constant axes. Color Research & Application 26, 223233.CrossRefGoogle Scholar
Díaz, J.A., Jiménez del Barco, L., Jiménez, J.R. & Perez-Ocon, F. (2001). Chromatic spatial summation at equiluminance. Optical Review 8, 388396.CrossRefGoogle Scholar
Gegenfurtner, K. (2003). Cortical mechanism of colour vision. Nature Reviews 4, 563572.CrossRefGoogle ScholarPubMed
He, Y., Rea, M.S., Bierman, A. & Bullogh, J. (1997). Evaluating light source efficacy under mesopic conditions using reaction times. Journal of the Illuminating Engineering Society 26, 125138.CrossRefGoogle Scholar
Hita, E., Gomez, J.L., Jimenez del Barco, L. & Romero, J. (1986). Spatial and chromatic dependencies on visual reaction time. Journal of Optics 17, 197202.CrossRefGoogle Scholar
Knoblauch, K., Arditi, A. & Szlyk, J. (1991). Effects of chromatic and luminance contrast on reading. Journal of the Optical Society of America 8, 428439.CrossRefGoogle ScholarPubMed
Lit, A., Young, R.H. & Schaffer, M. (1971). Simple reaction times as a function of luminance for various wavelengths. Perception and Psychophysics 10, 397399.Google Scholar
Luce, R.D. (1986). Response Times: Their Role in Inferring Elementary Mental Organization. New York: Oxford University Press.Google Scholar
MacLeod, D.I.A. & Boynton, R.M. (1979). A chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.CrossRefGoogle ScholarPubMed
Mansfield, R.J.W. (1973). Latency functions in human vision. Vision Research 13, 22192234.CrossRefGoogle ScholarPubMed
McKeefry, D.J., Parry, N.R.A. & Murray, I.J. (2003). Simple reaction times in color spaces: The influence of chromaticity, contrast and cone opponency. Investigative Ophthalmology and Visual Science 44, 22672276.CrossRefGoogle ScholarPubMed
Medina, J. (2009). 1/fα noise in reaction times: A proposed model based on Pieron’s law and information processing. Physical Review E 79, 011902.Google Scholar
Medina, J. & Diaz, J. (2006). Postreceptoral chromatic adaptation mechanism in the red-green and blue-yellow systems using simple reaction times. Journal of the Optical Society of America A 23, 9931007.CrossRefGoogle ScholarPubMed
Mullen, K. & Kingdom, F. (2002). Differential distributions of red-green and blue-yellow cone opponency across the visual field. Visual Neuroscience 19, 109118.CrossRefGoogle ScholarPubMed
Nissen, M.J. & Pokorny, J. (1977). Wavelength effects on reaction times. Perception and Psychophysics 22, 457462.CrossRefGoogle Scholar
O’Donell, B. & Colombo, E.M. (2008). Simple reaction times to chromatic stimuli: Luminance and chromatic contrast. Lighting Research and Technology 40, 359371.CrossRefGoogle Scholar
Parry, N.R.A., Murray, I.J. & McKeefry, D.J. (2008). Reaction time measures of adaptation to chromatic contrast. Visual Neuroscience 25, 405410.CrossRefGoogle ScholarPubMed
Parry, N.R.A., Plainis, S., Murray, I.J. & McKeefry, D.J. (2004). Effect of foveal tritanopia on reaction times to chromatic stimuli. Visual Neuroscience 21, 237242.CrossRefGoogle ScholarPubMed
Pieron, H. (1952). The Sensations: Their functions, processes and mechanisms. In The Sensations, ed., Muller, F., pp. 142162. London: Yale University Press. Translated by Pirenna, M.H. & Abbott, B. C.Google Scholar
Plainis, S. & Murray, I.J. (2000). Neurophysiological interpretation of human visual reaction times: Effect of contrast, spatial frequency and luminance. Neuropsychologia 38, 15551564.CrossRefGoogle ScholarPubMed
Plainis, S., Murray, I.J. & Charman, W.N. (2005). The role of retinal adaptation in night driving. Optometry and Vision Science 82, 682688.CrossRefGoogle ScholarPubMed
Pollack, J.D. (1968). Reaction times to different wavelength at various luminances. Perception and Psychophysics 10, 1724.Google Scholar
Raab, D. & Fehrer, E. (1962). The effect of stimulus duration and luminance on visual search. Journal of Experimental Psychology 64, 326327.CrossRefGoogle Scholar
Rains, J.D. (1963). Signal luminance and position effects in human reaction time. Vision Research 3, 239251.CrossRefGoogle Scholar
Rea, M.S. & Ouellette, M.J. (1988). Visual performance using reaction times. Lighting Research & Technology 40, 139153.CrossRefGoogle Scholar
Sankeralli, M. & Mullen, K. (2001). Bipolar or rectified chromatic detection mechanism? Visual Neuroscience 18, 127135.Google Scholar
Smith, V.C. & Pokorny, J. (1972). Spectral sensitivity of color blind observers and the cone photo pigments. Vision Research 12, 20592071.CrossRefGoogle Scholar
Smith, S.W. & Rea, M.S. (1980). Relationships Between Office Task Performance and Ratings of Feelings and Task Evaluations under Different Light Sources and Levels. Proceedings of the 19th Session of the CIE, Kyoto, Japan.Google Scholar
Smithson, H.E. & Mollon, J.D. (2004). Is the S-opponent chromatic sub-system sluggish? Vision Research 44, 29192929.CrossRefGoogle ScholarPubMed
Ueno, T., Pokorny, J. & Smith, V. (1985). Reaction times to chromatic stimuli. Vision Research 25, 16231627.Google Scholar
Van Den Berg, T., Van Rijn, L., Michael, R., Heine, C., Coeckelbergh, T., Nischler, C., Wilhelm, H., Grabner, G., Emesz, M. & Barraquer, R. (2007). Straylight effects with aging and lens extraction. American Journal of Ophthalmology 144, 358363.CrossRefGoogle ScholarPubMed
Vassilev, A., Murzac, A., Zlatkova, M. & Anderson, R. (2009). On the search for an appropriate metric for reaction time to suprathreshold increments and decrements. Vision Research 49, 524529.CrossRefGoogle ScholarPubMed
Walkey, H.C., Harlow, J.A. & Barbour, J.L. (2006). Changes in reaction times and search time with luminance in the mesopic range. Ophthalmic Physiology 26, 288299.Google Scholar
Zele, A., Cao, D. & Pokorny, J. (2007). Threshold units: A correct metric for reaction time? Vision Research 47, 608611.CrossRefGoogle ScholarPubMed
Zele, A., Cao, D. & Pokorny, J. (2008). Rod-cone interactions and temporal impulse response of the cone pathway. Vision Research 48, 25932598.Google Scholar