Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T05:29:06.713Z Has data issue: false hasContentIssue false

Dynamics of orientation coding in area V1 of the awake primate

Published online by Cambridge University Press:  02 June 2009

Simona Celebrini
Affiliation:
Département des Neurosciences de la Vision Active, Université Pierre et Marie Curie, Paris, France
Simon Thorpe
Affiliation:
Département des Neurosciences de la Vision Active, Université Pierre et Marie Curie, Paris, France
Yves Trotter
Affiliation:
Département des Neurosciences de la Vision Active, Université Pierre et Marie Curie, Paris, France
Michel Imbert
Affiliation:
Département des Neurosciences de la Vision Active, Université Pierre et Marie Curie, Paris, France

Abstract

To investigate the importance of feedback loops in visual information processing, we have analyzed the dynamic aspects of neuronal responses to oriented gratings in cortical area V1 of the awake primate. If recurrent feedback is important in generating orientation selectivity, the initial part of the neuronal response should be relatively poorly selective, and full orientation selectivity should only appear after a delay. Thus, by examining the dynamics of the neuronal responses it should be possible to assess the importance of feedback processes in the development of orientation selectivity. The results were base on a sample of 259 cells recorded in two monkeys, of which 89% were visually responsive. Of these, approximately two-thirds were orientation selective. Response latency varied considerably between neurons, ranging from a minimum of 41 ms to over 150 ms, although most had latencies of 50–70 ms. Orientation tuning (defined as the bandwidth at half-height) ranged from 16 deg to over 90 deg, with a mean value of around 55 deg. By examining the selectivity of these different neurons by 10-ms time slices, starting at the onset of the neuronal response, we found that the orientation selectivity of virtually every neuron was fully developed at the very start of the neuronal response. Indeed, many neurons showed a marked tendency to respond at somewhat longer latencies to stimuli that were nonoptimally oriented, with the result that orientation selectivity was highest at the very start of the neuronal response. Furthermore, there was no evidence that the neurons with the shortest onset latencies were less selective. Such evidence is inconsistent with the hypothesis that recurrent intracortical feedback plays an important role in the generation of orientation selectivity. Instead, we suggest that orientation selectivity is primarily generated using feedforward mechanisms, including feedforward inhibition. Such a strategy has the advantage of allowing orientation to be computed rapidly, and avoids the initially poorly selective neuronal responses that characterize processing involving recurrent loops.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bach, M., Bouis, D. & Fischer, B. (1983). An accurate and linear infrared oculometer. Journal of Neuroscience Methods 9, 9–14.CrossRefGoogle ScholarPubMed
Best, J., Mallot, H., Krüger, K. & Dinse, H.R.O. (1989). Dynamics of visual information processing in cortical systems. In Neural Networks: From Models to Applications, ed. Personnaz, L. & Dreyfus, G., pp. 107116. Paris, France: IDSET.Google Scholar
Best, J., Reuss, S. & Dinse, H.R.O. (1986). Lamina-specific differences of visual latencies following photic stimulation in the cat striate cortex. Brain Research 385, 356–360.CrossRefGoogle ScholarPubMed
Bishop, P.O., Coombs, J.S. & Henry, G.H. (1971). Interaction effects of visual contours on the discharge frequency of simple striate neurones. Journal of Physiology 219, 659–687.CrossRefGoogle ScholarPubMed
Bonds, A.B. (1989). Role of inhibition in the specification of orientation selectivity of cells in the cat striate cortex Visual Neuroscience 2, 41–56.CrossRefGoogle ScholarPubMed
Bradley, A., Skottun, B.C., Ohzawa, I., Sclar, G. & Freeman, R.D. (1987). Visual orientation and spatial-frequency discrimination: A comparison of single neurons and behavior. Journal of Neurophysiology 57, 755–772.CrossRefGoogle ScholarPubMed
Carpenter, R.H.S. & Blakemore, C. (1973). Interactions between orientations in human vision. Experimental Brain Research 18, 287–303.CrossRefGoogle ScholarPubMed
Celebrini, S., Thorpe, S.J., Trotter, Y. & Imbert, M. (1990). Lack of masking in primate V1 neurons: Evidence for feedforward processing of orientation. Perception 19, 377.Google Scholar
Chapman, B., Zahs, K.R. & Stryker, M.P. (1991). Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. Journal of Neuroscience 11(5), 1347–1358.CrossRefGoogle ScholarPubMed
Connors, B.W. & Gutnick, M.J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends in Neurosciences 13, 99–104.CrossRefGoogle ScholarPubMed
Creutzfeldt, O.D., Kuhnt, U. & Benevento, L.A. (1974). An intracellular analysis of visual cortical neurones to moving stimulus: Responses in a co-operative neuronal network. Experimental Brain Research 21, 251–274.CrossRefGoogle Scholar
DeValois, R.L., Yund, E.W. & Hepler, N. (1982). The orientation and direction selectivity of cells in macaque visual cortex. Vision Research 22, 531–544.CrossRefGoogle Scholar
De Yoe, E.A. & Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219–226.CrossRefGoogle ScholarPubMed
Dinse, H.R., Krüger, K. & Best, J. (1990). A temporal structure of cortical information processing. Concepts in Neuroscience 1, 199–238.Google Scholar
Ferster, D. & Koch, C. (1987). Neuronal connections underlying orientation selectivity in visual cortex. Trends in Neuroscience 10–12, 487–492.CrossRefGoogle Scholar
Ferster, D. & LindstrÖm, S. (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 in the cat. Journal of Physiology 342, 181–216.CrossRefGoogle ScholarPubMed
Freund, T.F., Martin, K.A.C., Soltesz, I., Somogyi, P. & Whitteridge, D. (1989). Arborisation pattern and postsynaptic targets of physiologically identified thalamo-cortical afferents in striate cortex of the macaque monkey. Journal of Comparative Neurology 289, 315–336.CrossRefGoogle Scholar
Gilbert, C.D. & Kelly, J.P. (1975). The projections of cells in different layers of the cat visual cortex. Journal of Comparative Neurology 163, 81–106.CrossRefGoogle Scholar
Haenny, P.E. & Schiller, P.H. (1988). State-dependent activity in monkey visual cortex. 1. Single-cell activity in V1 and V4 on visual tasks. Experimental Brain Research 69, 225–244.CrossRefGoogle Scholar
Heggelund, P. (1981). Receptive-field organization of simple cells in cat striate cortex. Experimental Brain Research 42, 89–98.Google ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interactions, and functional architecture in the cat's visual cortex. Journal of Physiology 160, 106–154.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215–243.CrossRefGoogle ScholarPubMed
Kennedy, H. & Orban, G.A. (1979). Preferences for horizontal or vertical orientation in cat visual cortical neurones. Journal of Physiology 296, 61 P.Google ScholarPubMed
Knierim, J.J. & Van Essen, D.C. (1992). Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. Journal of Neurophysiology 67, 961–980.CrossRefGoogle ScholarPubMed
Lazereva, N.A., Novikova, R.V., Tikhomirov, A.S. & Shevelev, I.A. (1987). “Timer” and “Scanner” neurons in the cat visual cortex with low stimulus-background contrast. Neurophysiology 18, 569–574.CrossRefGoogle Scholar
Lennie, P. (1981). The physiological basis of variations in visual latency. Vision Research 21, 815–824.CrossRefGoogle ScholarPubMed
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H. & Fuchs, A.F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164, 287–303.CrossRefGoogle ScholarPubMed
Martin, K.A.C. (1988). The Wellcome prize lecture: From single cells to simple circuits in the cerebral cortex. Quarterly Journal of Experimental Physiology 73, 637–702.CrossRefGoogle ScholarPubMed
Matsubara, J.A., Cynader, M.S. & Swindale, N.V. (1987). Anatomical properties and physiological correlates of the intrinsic connections in cat area 18. Journal of Neuroscience 1428–1446.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Gibson, J.R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 1332–1344.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Newsome, W.T. (1987). Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10, 363–402.CrossRefGoogle ScholarPubMed
Morrone, M.C., Burr, D.C. & Maffei, L. (1982). Functional significance of cross-orientation inhibition. Part I. Neurophysiology. Proceedings of the Royal Society B (London) 216, 335–354.Google Scholar
Mumford, D. (1991). On the computational architecture of the neocortex. I. The role of the thalamocortical loop. Biological Cybernetics 65(2), 135–145.CrossRefGoogle Scholar
Mumford, D. (1992). On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biological Cybernetics 66, 241–255.CrossRefGoogle ScholarPubMed
Nelson, S.B. (1991). Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. Journal of Neuroscience 11, 344–356.CrossRefGoogle Scholar
Oram, M.W. & Perrett, D.I. (1992). Time course of neural responses discriminating different views of the face and head Journal of Neurophysiology 68, 70–84.CrossRefGoogle ScholarPubMed
Orban, G.A. (1984). Neuronal Operations in the Visual Cortex. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Parker, A.J. & Hawken, M. (1985). Capabilities of monkey cortical cells in spatial resolution tasks. Journal of the Optical Society of America 2, 1101–1114.CrossRefGoogle ScholarPubMed
Pei, X., Volgushev, M. & Creutzfeldt, O. (1991). Postsynaptic potentials of visual cortical neurones in vivo: II. Receptive-field structure and oscillation. European Journal of Neuroscience (Suppl.) 4, 50.Google Scholar
Perrett, D.I., Rolls, E.T. & Caan, W. (1982). Visual neurones responsive to faces in the monkey temporal cortex. Experimental Brain Research 47, 329–342.CrossRefGoogle ScholarPubMed
Petersen, S.E., Miezin, F.M. & Allman, J.M. (1988). Transient and sustained responses in 4 extrastriate visual areas of the owl monkey. Experimental Brain Research 70, 55–60.CrossRefGoogle Scholar
Poggio, G.F. & Poggio, T. (1984). The analysis of stereopsis. Annual Review of Neuroscience 7, 379–412.CrossRefGoogle ScholarPubMed
Raiguel, S.E., Lagae, L., Gulyas, B. & Orban, G.A. (1989). Response latencies of visual cells in macaque areas V1, V2, and V5. Brain Research 493, 155–159.CrossRefGoogle ScholarPubMed
Ramoa, A.S., Shadlen, M., Skottun, B.C. & Freeman, R.D. (1986). A comparison of inhibition in orientation and spatial-frequency selectivity of cat visual cortex. Nature 321, 237–239.CrossRefGoogle ScholarPubMed
Rockland, K.S. & Virga, A. (1989). Terminal arbors of individual “feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported phaseolus-vulgaris leucoagglutinin. Journal of Comparative Neurology 285, 54–72.CrossRefGoogle ScholarPubMed
Rolls, E.T., Tovee, M.J. & Lee, B. (1991). Temporal response properties of neurones in the macaque inferior temporal visual cortex. European Journal of Neuroscience (Suppl.) 4, 84.Google Scholar
Rose, D. & Blakemore, C. (1974). An analysis of orientation selectivity in the cat's visual cortex. Experimental Brain Research 20, 1–17.CrossRefGoogle ScholarPubMed
Schwarz, C. & Bolz, J. (1991). Functional specificity of a long-range horizontal connection in cat visual cortex: A cross-correlation study. Journal of Neuroscience 11, 2995–3007.CrossRefGoogle ScholarPubMed
Shevelev, I.A., Volgushev, M.A. & Sharaev, G.A. (1992). Dynamics of responses of V1 neurons evoked by stimulation of different zones of receptive fields. Neuroscience 51, 445–450.CrossRefGoogle Scholar
Sillito, A.M. (1975). The contribution of inhibitory mechanisms to the receptive-field properties of neurones in the striate cortex of the cat. Journal of Physiology 250, 305–329.CrossRefGoogle Scholar
Sillito, A.M. (1986). Inhibitory circuits and orientation selectivity in the visual cortex. In Models of the Visual Cortex, ed. Rose, D. & Dobson, V.G. pp. 396407. Chichester: John Wiley.Google Scholar
Sillito, A.M., Kemp, J.A., Milson, J.A. & Berardi, N. (1980). A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Research 194, 517–520.CrossRefGoogle ScholarPubMed
Snowden, R.J., Treue, S. & Andersen, R.A. (1992). The response of neurons in areas V1 and MT of the alert rhesus monkey to moving random-dot patterns. Experimental Brain Research 88, 389–400.CrossRefGoogle ScholarPubMed
Swindale, N.V. & Cynader, M.S. (1989). Vernier acuities of neurons in area 17 of cat visual cortex: Their relation to stimulus length and velocity, orientation selectivity, and receptive-field structure. Visual Neuroscience 2, 165–176.CrossRefGoogle ScholarPubMed
Thorpe, S.J., Celebrini, S., Trotter, Y. & Imbert, M. (1991). Dynamics of stereo processing in area V1 of the awake primate. European Journal of Neuroscience (Suppl.) 4, 83.Google Scholar
Thorpe, S.J., Celebrini, S., Trotter, Y., Pouget, A. & Imbert, M. (1989). Dynamic aspects of orientation coding in area V1 of the awake primate. European Journal of Neuroscience (Suppl.) 2, 322.Google Scholar
Thorpe, S.J. & Imbert, M. (1989). Biological constraints on connectionist models. In Connectionism in Perspective, ed. Pfeifer, R., Schreter, Z., Fogelman-Soulié, F. & Steels, L., pp. 6392. Amsterdam: Elsevier.Google Scholar
Tigges, J., Spatz, W.B. & Tigges, M. (1974). Efferent cortico-cortical connections of area 18 in the squirrel monkey (Saimiri). Journal of Comparative Neurology 158, 219–236.CrossRefGoogle ScholarPubMed
Tolhurst, D.J., Movshon, J.A. & Dean, A.F. (1983). The statistical reliability of signals in single neurons in cat and monkey visual cortex. Vision Research 23, 775–786.CrossRefGoogle Scholar
Tömböl, T, Hajdu, F. & Somogyi, P. (1975). Identification of the golgi picture of the layer V1 cortico-geniculate projection neurones. Experimental Brain Research 24, 107–110.CrossRefGoogle Scholar
Toyama, K., Maekawa, K. & Takeda, T. (1973). An analysis of neuronal circuitry for two types of visual cortical neurones classified on the basis of their responses to photic stimuli. Brain Research 61, 395–398.CrossRefGoogle ScholarPubMed
Toyama, K., Kimura, M. & Tanaka, K. (1981). Organization of cat visual cortex as investigated by cross-correlation technique. Journal of Neurophysiology 46, 202–214.CrossRefGoogle ScholarPubMed
Trotter, Y., Celebrini, S., Beaux, J.C. & Grandjean, B. (1990). Neuronal stereoscopic processing following extraocular proprioceptive deafferentation. Neuroreport 1, 187–190.CrossRefGoogle Scholar
Trotter, Y., Celebrini, S., Stricanne, B., Thorpe, S. & Imbert, M. (1992). Modulation of neural stereoscopic processing in primate area V1 by the viewing distance. Science 257, 1279–1281.CrossRefGoogle ScholarPubMed
Trotter, Y., Thorpe, S.J., Celebrini, S., Pouget, A. & Imbert, M. (1989). Processing of orientation in V1 of the awake monkey. Society of Neuroscience Abstracts 15, 1056.Google Scholar
Ts'o, D.Y., Gilbert, C.D. & Wiesel, T.N. (1986). Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. Journal of Neuroscience 6, 1160–1170.CrossRefGoogle ScholarPubMed
Tsumoto, T., Eckart, W. & Creutzfeldt, O.D. (1979). Modification of orientation sensitivity of cat visual cortex neurons by removal of GABA-mediated inhibition. Experimental Brain Research 34, 351–363.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Anderson, C.H. & Felleman, D.J. (1992). Information processing in the primate visual system: An integrated systems perspective. Science 255, 419–423.CrossRefGoogle ScholarPubMed
Vidyasagar, T.R. (1987). A model of striate response properties based on geniculate anisotropies. Biological Cybernetics 57, 11–24.CrossRefGoogle Scholar
Vogels, R. & Orban, G.A. (1990). How well do response changes of striate neurons signal differences in orientation—A study in the discriminating monkey. Journal of Neuroscience 10, 3543–3558.CrossRefGoogle ScholarPubMed
Vogels, R. & Orban, G.A. (1991). Quantitative study of striate single-unit responses in monkeys performing an orientation discrimination task. Experimental Brain Research 84, 1–11.CrossRefGoogle ScholarPubMed
Vogels, R., Spileers, W. & Orban, G.A. (1989). The response variability of striate cortical neurons in the behaving monkey. Experimental Brain Research 77, 432–436.CrossRefGoogle ScholarPubMed
von der Heydt, R. & Peterhans, E. (1989). Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. Journal of Neuroscience 9, 1731–1748.CrossRefGoogle ScholarPubMed
Watanabe, S., Konishi, M. & Creutzfeldt, O.D. (1966). Postsynaptic potentials in the cat's visual cortex following electric stimulation of afferent pathways. Experimental Brain Research 1, 272–283.CrossRefGoogle ScholarPubMed
Wörgötter, F. & Eysel, U.T. (1991). Topographical aspects of intracortical excitation and inhibition contributing to orientation specificity in area 17 of the cat visual cortex European Journal of Neuroscience 3, 1232–1244.CrossRefGoogle ScholarPubMed
Wörgötter, F. & Koch, C. (1991). A detailed model of the primary visual pathway in the cat —Comparison of afferent excitatory and intracortical inhibitory connection schemes for orientation selectivity. Journal of Neuroscience 11(7), 1959–1979.CrossRefGoogle ScholarPubMed
Yeshurun, Y. & Schwartz, E.L. (1990). Neural maps as data structures. Fast segmentation of binocular images. In Computational Neuroscience, ed. Schwartz, E.L., pp. 256266. Cambridge, Massachusetts: MIT Press.Google Scholar
Zeki, S. & Shipp, S. (1988). The functional logic of cortical connections. Nature 335, 311–316.CrossRefGoogle ScholarPubMed
Zohary, E., Hillman, P. & Hochstein, S. (1990). Time course of perceptual discrimination and single neuron reliability. Biological Cybernetics 62, 475–486.CrossRefGoogle ScholarPubMed