Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T13:11:16.255Z Has data issue: false hasContentIssue false

Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input?

Published online by Cambridge University Press:  06 September 2006

HAO SUN
Affiliation:
State University of New York, State College of Optometry, New York, New York
HANNAH E. SMITHSON
Affiliation:
Department of Psychology, Durham University, Durham, United Kingdom
QASIM ZAIDI
Affiliation:
State University of New York, State College of Optometry, New York, New York
BARRY B. LEE
Affiliation:
State University of New York, State College of Optometry, New York, New York Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

Abstract

We recently developed a new technique to measure cone inputs to visual neurons and used this technique to seek short-wavelength-sensitive (S) cone inputs to parasol, magnocellular (MC) and midget, parvocellular (PC) ganglion cells. Here, we compare our physiological measurements of S-cone weights to those predicted by a random wiring model that assumes cells' receptive fields receive input from mixed cone types. The random wiring model predicts the average weights of S-cone input to be similar to the total percentage of S-cones but with considerable scatter, and the S-cone input polarity to be consistent with that of PC cells' surround and of MC cells' center. This is not consistent with our physiological measurements. We suggest that the ganglion cells' receptive fields may have a mechanism to avoid S-cone inputs, as is the case in the H1 horizontal cells. Previous reports of S-cone inputs, in particular substantial input to MC cells, are likely to reflect variation in prereceptoral filtering and/or the failure to correct for variation in macular pigment.

Type
PHYSIOLOGY/ANATOMY
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahnelt, P., Keri, C., & Kolb, H. (1990). Identification of pedicles of putative blue-sensitive cones in the human retina. Journal of Comparative Neurology 293, 3953.CrossRefGoogle Scholar
Baylor, D.A., Nunn, B.J., & Schnapf, J.L. (1987). Spectral sensitivity of cones of the monkey Macaca fascicularis. Journal of Physiology 390, 145160.CrossRefGoogle Scholar
Boycott, B.B. & Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience 3, 10691088.CrossRefGoogle Scholar
Buchsbaum, G. & Gottschalk, A. (1983). Trichromacy, opponent colours coding and optimum colour information transmission in the retina. Proceedings of the Royal Society B (London) 220, 89113.CrossRefGoogle Scholar
Chatterjee, S. & Callaway, E.M. (2002). S cone contributions to the magnocellular visual pathway in macaque monkey. Neuron 35, 11351146.CrossRefGoogle Scholar
Cornish, E.E., Hendrickson, A.E., & Provis, J.M. (2004). Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: Early development of spatial order and density profiles. Vision Research 44, 20192026.CrossRefGoogle Scholar
Dacey, D.M. & Lee, B.B. (1994). The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.CrossRefGoogle Scholar
Dacey, D.M., Lee, B.B., Stafford, D.K., Pokorny, J., & Smith, V.C. (1996). Horizontal cells of the primate retina: Cone specificity without spectral opponency. Science 271, 656659.CrossRefGoogle Scholar
deMonasterio, F., Schein, S., & McCrane, E. (1981). Staining of blue-sensitive cones of macaque retina by a florescent dye. Science 213, 12781281.CrossRefGoogle Scholar
Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 241265.CrossRefGoogle Scholar
Gaillard, E.R., Zheng, L., Merriam, J.C., & Dillon, J. (2000). Age-related changes in the absorption characteristics of the primate lens. Investigative Ophthalmology and Visual Science 41, 14541459.Google Scholar
Hornstein, E.P., Verweij, J., & Schnapf, J.L. (2004). Electrical coupling between red and green cones in primate retina. Nature Neuroscience 7, 745750.CrossRefGoogle Scholar
Ibbotson, R.E., Hunt, D.M., Bowmaker, J.K., & Mollon, J.D. (1992). Sequence divergence and copy number of the middle- and long-wave photopigment genes in old world monkeys. Proceedings of the Royal Society B (London) 247, 145154.CrossRefGoogle Scholar
Kolb, H., Goede, P., Roberts, S., McDermott, R., & Gouras, P. (1997). Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. Journal of Comparative Neurology 386, 443460.3.0.CO;2-1>CrossRefGoogle Scholar
Kouyama, N. & Marshak, D.W. (1997). The topographical relationship between two neuronal mosaics in the short wavelength-sensitive system of the primate retina. Visual Neuroscience 14, 159167.CrossRefGoogle Scholar
Kunken, J.M., Sun, H., & Lee, B.B. (2005). Macaque ganglion cells, light adaptation, and the Westheimer paradigm. Vision Research 45, 329341.CrossRefGoogle Scholar
Lee, B.B. (2004). Paths to colour in the retina. Clinical and Experimental Optometry 87, 239248.CrossRefGoogle Scholar
Lee, B.B., Kremers, J., & Yeh, T. (1998). Receptive fields of primate retinal ganglion cells studied with a novel technique. Visual Neuroscience 15, 161175.CrossRefGoogle Scholar
Lee, S., Jusuf, P., & Grünert, U. (2004). S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina. Journal of Comparative Neurology 474, 353363.CrossRefGoogle Scholar
Lennie, P., Haake, P.W., & Williams, D.R. (1991). The design of chromatically opponent receptive fields. In Computational Models of Visual Processing, eds. Landy, M. & Movshon, J., pp. 7182. Cambridge, MA: MIT Press.
Li, W. & DeVries, S.H. (2004). Separate blue and green cone networks in the mammalian retina. Nature Neuroscience 7, 751756.CrossRefGoogle Scholar
Mariani, A.P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184186.CrossRefGoogle Scholar
Martin, P.R. & Grünert, U. (1999). Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of new world and old world monkeys. Journal of Comparative Neurology 406, 114.Google Scholar
Martin, P.R., Grünert, U., Chan, T.L., & Bumsted, K. (2000). Spatial order in short-wavelength-sensitive cone photoreceptors: A comparative study of the primate retina. Journal of the Optical Society of America A 17, 557567.CrossRefGoogle Scholar
McMahon, M.J., Lankheet, M.J., Lennie, P., & Williams, D.R. (2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. Journal of Neuroscience 20, 20432053.Google Scholar
Mullen, K.T. & Kingdom, F.A. (1996). Losses in peripheral colour sensitivity predicted from “hit and miss” post-receptoral cone connections. Vision Research 36, 19952000.CrossRefGoogle Scholar
Parraga, C.A., Troscianko, T., & Tolhurst, D.J. (2002). Spatiochromatic properties of natural images and human vision. Current Biology 12, 483487.CrossRefGoogle Scholar
Polyak, S. (1941). The Retina. Chicago: University of Chicago Press.
Reid, R.C. & Shapley, R.M. (1992). Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. Nature 356, 716718.CrossRefGoogle Scholar
Reid, R.C. & Shapley, R.M. (2002). Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. Journal of Neuroscience 22, 61586175.Google Scholar
Snodderly, D.M., Brown, P.K., Delori, F.C., & Auran, J.D. (1984). The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Investigative Ophthalmology and Visual Science 25, 660673.Google Scholar
Stockman, A., MacLeod, D.I.A., & Johnson, N.E. (1993a). Spectral sensitivities of the human cones. Journal of the Optical Society of America A 10, 24912521.Google Scholar
Stockman, A., MacLeod, D.I.A., & Vivien, J.A. (1993b). Isolation of the middle- and long-wavelength sensitive cones in normal trichromats. Journal of the Optical Society of America A 10, 24712490.Google Scholar
Sun, H., Smithson, H.E., Zaidi, Q., & Lee, B.B. (2006). Specificity of cone inputs to macaque retinal ganglion cells. Journal of Neurophysiology 95, 837849.Google Scholar
Taylor, A.H. & Kerr, G.P. (1941). The distribution of energy in the visible spectrum of daylight. Journal of the Optical Society of America 31, 38.CrossRefGoogle Scholar