Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T17:00:54.891Z Has data issue: false hasContentIssue false

Differences in chromatic noise suppression of luminance contrast discrimination in young and elderly people

Published online by Cambridge University Press:  13 October 2022

Rosa Maria Guimarães Brito
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Amapá, Macapá, Brazil
Bruna Rafaela Silva Sousa
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
Letícia Miquilini
Affiliation:
Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Brazil
Paulo Roney Kilpp Goulart
Affiliation:
Núcleo de Teoria e Pesquisa do Comportamento, Universidade Federal do Pará, Belém, Brazil
Marcelo Fernandes Costa
Affiliation:
Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
Dora Fix Ventura
Affiliation:
Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
Maria Izabel Tentes Cortes
Affiliation:
Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Amapá, Macapá, Brazil
Givago Silva Souza*
Affiliation:
Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil Núcleo de Medicina Tropical, Universidade Federal do Pará, Belém, Brazil
*
Corresponding author: Givago Silva Souza, email: [email protected]

Abstract

Aging causes impairment of contrast sensitivity and chromatic discrimination, leading to changes in the perceptual interactions between color and luminance information. We aimed to investigate the influence of chromatic noise on luminance contrast thresholds in young and older adults. Forty participants were divided equally into Young (29.6 ± 6.3-year-old) and Elderly Groups (57.8 ± 6.6-year-old). They performed a luminance contrast discrimination task in the presence of chromatic noise maskers using a mosaic stimulus in a mosaic background. Four chromatic noise masking protocols were applied (protan, deutan, tritan, and no-noise protocols). We found that luminance contrast thresholds were significantly elevated by the addition of chromatic noise in both age groups (P < 0.05). In the Elderly group, but not the younger group, thresholds obtained in the tritan protocol were lower than those obtained from protan and deutan protocols (P < 0.05). For all protocols, the luminance contrast thresholds of elderly participants were higher than in young people (P < 0.01). Tritan chromatic noise was less effective in inhibiting luminance discrimination in elderly participants.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barbur, J.L. & Rodriguez-Carmona, M. (2016). Color vision changes in normal aging. In Handbook of Color Psychology, eds. Elliott, A.J., Fairchild, M.D. & Franklin, A., pp. 180196. Cambridge: Cambridge University Press.Google Scholar
Burton, K.B., Owsley, C. & Sloane, M.E. (1993). Aging and neural spatial contrast sensitivity: Photopic vision. Vision Research 33, 939946. https://doi.org/10.1016/0042-6989(93)90077-aCrossRefGoogle ScholarPubMed
Chen, C., Foley, J.M. & Brainard, D.H. (2000). Detection of chromoluminance patterns on chromoluminance pedestals I: Threshold measurements. Vision Research 40, 773788. https://doi.org/10.1016/s0042-6989(99)00227-8Google ScholarPubMed
Dacey, D.M. & Lee, B.B. (1994). The ’blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735. https://doi.org/10.1038/367731a0Google ScholarPubMed
Donofrio, R.L. (2011). The Helmholtz–Kohlrausch effect. Journal of the Society for Information Display 19, 658. http://doi.org/10.1889/jsid19.10.658Google Scholar
Fiorentini, A., Porciatti, V., Morrone, M.C. & Burr, D.C. (1996). Visual ageing: Unspecific decline of the responses to luminance and colour. Vision Research 36, 35573566. https://doi.org/10.1016/0042-6989(96)00032-6Google ScholarPubMed
Frey, H.P., Honey, C. & König, P. (2008). What’s color got to do with it? The influence of color on visual attention in different categories. Journal of Vision 8, 117. http://doi.org/10.1167/8.14.6Google Scholar
Gegenfurtner, K.R. & Kiper, D.C. (1992). Contrast detection in luminance and chromatic noise. Journal of the Optical Society of America. A, Optics and Image Science 9, 18801888. https://doi.org/10.1364/josaa.9.001880Google ScholarPubMed
Gordon, J. & Shapley, R. (2006) Brightness contrast inhibits color induction: Evidence for a new kind of color theory. Spatial Vision 19, 133146. http://doi.org/10.1163/156856806776923498Google ScholarPubMed
Ishihara, S. (1997). The series of plates designed as a test for colour deficiency. In Ishihara’s Tests for Colour Deficiency (38 plates ed.), ed. Ishihara, S., pp. 19. Tokyo: Kanehara.Google Scholar
Johnson, E.N., Hawken, M.J. & Shapley, R. (2001). The spatial transformation of color in the primary visual cortex of the macaque monkey. Nature Neuroscience 4, 409416. https://doi.org/10.1038/86061CrossRefGoogle ScholarPubMed
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the United States of America 83, 27552757. https://doi.org/10.1073/pnas.83.8.2755CrossRefGoogle ScholarPubMed
Kingdom, F.A., Bell, J., Gheorghiu, E. & Malkoc, G. (2010). Chromatic variations suppress suprathreshold brightness variations. Journal of Vision 10, 13. https://doi.org/10.1167/10.10.13Google ScholarPubMed
Knoblauch, K., Saunders, F., Kusuda, M., Hynes, R., Podgor, M., Higgins, K.E. & de Monasterio, F.M. (1987). Age and illuminance effects in the Farnsworth-Munsell 100-hue test. Applied Optics 26, 14411448. https://doi.org/10.1364/AO.26.001441CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F. & Barbur, J.L. (2001). Variation of chromatic sensitivity across the life span. Vision Research 41, 2336. https://doi.org/10.1016/s0042-6989(00)00205-4Google ScholarPubMed
Lee, B.B., Martin, P.R. & Valberg, A. (1989). Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. The Journal of Physiology 414, 223243. https://doi.org/10.1113/jphysiol.1989.sp017685Google ScholarPubMed
Lee, B. B., Sun, H. & Valberg, A. (2011). Segregation of chromatic and luminance signals using a novel grating stimulus. The Journal of Physiology 589, 5973. https://doi.org/10.1113/jphysiol.2010.188862CrossRefGoogle ScholarPubMed
Levitt, H. (1971). Transformed up-down methods in psychoacoustics. Journal of the Acoustical Society of America 49, 467477.Google ScholarPubMed
Li, X., Chen, Y., Lashgari, R., Bereshpolova, Y., Swadlow, H.A., Lee, B.B. & Alonso, J.M. (2015). Mixing of chromatic and luminance retinal signals in primate area V1. Cerebral Cortex 25, 19201937. https://doi.org/10.1093/cercor/bhu002Google ScholarPubMed
Mateus, C., Lemos, R., Silva, M.F., Reis, A., Fonseca, P., Oliveiros, B. & Castelo-Branco, M. (2013). Aging of low and high level vision: From chromatic and achromatic contrast sensitivity to local and 3D object motion perception. PLoS One 8(1), e55348. https://doi.org/10.1371/journal.pone.0055348Google ScholarPubMed
Miquilini, L., Walker, N.A., Odigie, E.A., Guimarães, D.L., Salomão, R.C., Lacerda, E., Cortes, M., de Lima Silveira, L.C., Fitzgerald, M., Ventura, D.F. & Souza, G.S. (2017). Influence of spatial and chromatic noise on luminance discrimination. Scientific Reports 7, 16944. https://doi.org/10.1038/s41598-017-16817-0Google ScholarPubMed
Negishi, I. & Shinomori, K. (2021). Suppression of luminance contrast sensitivity by weak color presentation. Frontiers in Neuroscience 15, 668116. https://doi.org/10.3389/fnins.2021.668116Google ScholarPubMed
Page, J.W. & Crognale, M.A. (2005). Differential aging of chromatic and achromatic visual pathways: Behavior and electrophysiology. Vision Research 45, 14811489. https://doi.org/10.1016/j.visres.2004.09.041Google ScholarPubMed
Paramei, G.V. & Oakley, B. (2014). Variation of color discrimination across the life span. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 31, A375A384. https://doi.org/10.1364/JOSAA.31.00A375Google ScholarPubMed
Pokorny, J., Smith, V.C. & Lutze, M. (1987). Aging of the human lens. Applied Optics 26, 14371440. https://doi.org/10.1364/AO.26.001437Google ScholarPubMed
Preciado, O.U., Martin, A., Manzano, E., Smet, K.A.G. & Hanselaer, P. (2021). CAM18sl brightness prediction for unrelated saturated stimuli including age effects. Optics Express 29, 2925729274. https://doi.org/10.1364/OE.431382Google ScholarPubMed
Rozema, J.J., Van den Berg, T.J. & Tassignon, M.J. (2010). Retinal straylight as a function of age and ocular biometry in healthy eyes. Investigative Ophthalmology & Visual Science 51, 27952799. https://doi.org/10.1167/iovs.09-4056Google ScholarPubMed
Shapley, R. & Hawken, M. (2002). Neural mechanisms for color perception in the primary visual cortex. Current Opinion in Neurobiology 12, 426432. https://doi.org/10.1016/s0959-4388(02)00349-5Google ScholarPubMed
Shinomori, K. & Werner, J.S. (2012). Aging of human short-wave cone pathways. Proceedings of the National Academy of Sciences of the United States of America 109, 1342213427. https://doi.org/10.1073/pnas.1119770109Google ScholarPubMed
Sousa, B., Loureiro, T., Goulart, P., Cortes, M., Costa, M.F., Bonci, D., Baran, L., Hauzman, E., Ventura, D.F., Miquilini, L., & Souza, G.S. (2020). Specificity of the chromatic noise influence on the luminance contrast discrimination to the color vision phenotype. Scientific Reports 10, 17897. https://doi.org/10.1038/s41598-020-74875-3CrossRefGoogle Scholar
Switkes, E., Bradley, A. & De Valois, K.K. (1988). Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings. Journal of the Optical Society of America. A, Optics and Image Science 5, 11491162. https://doi.org/10.1364/josaa.5.001149Google ScholarPubMed
Tamura, S. & Sato, K. (2020). Age-related changes in visual search: Manipulation of colour cues based on cone contrast and opponent modulation space. Scientific Reports 10, 21328. https://doi.org/10.1038/s41598-020-78303-4Google ScholarPubMed
Ventura, D.F., Silveira, L.C., Rodrigues, A.R., de Souza, J., Gualtieri, M., Bonci, D.M & Costa, M.F. (2003). Preliminary norms for the Cambridge colour test. In Colour and Defective Colour Vision (1st ed.), eds. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 331339. New York: Oxford University Press.Google Scholar
Weale, R.A. (1973). The ageing eye. Proceedings of the Royal Society of Medicine 66, 160161.Google ScholarPubMed
Weinrich, T.W., Powner, M.B., Lynch, A., Jonnal, R.S., Werner, J.S. & Jeffery, G. (2017). No evidence for loss of short-wavelength sensitive cone photoreceptors in normal ageing of the primate retina. Scientific Reports 7, 46346. https://doi.org/10.1038/srep46346Google ScholarPubMed
Werner, J.S., Donnelly, S.K. & Kliegl, R. (1987). Aging and human macular pigment density. Appended with translations from the work of Max Schultze and Ewald Hering. Vision Research 27, 257268. http://doi.org/10.1016/0042-6989(87)90188-xGoogle ScholarPubMed
Werner, J.S. & Steele, V.G. (1988). Sensitivity of human foveal color mechanisms throughout the life span. Journal of the Optical Society of America. A, Optics and image science 5, 21222130. https://doi.org/10.1364/josaa.5.002122Google ScholarPubMed
Xing, D., Ouni, A., Chen, S., Sahmoud, H., Gordon, J. & Shapley, R. (2015). Brightness–color interactions in human early visual cortex. The Journal of Neuroscience 35, 22262232. https://doi.org/10.1523/JNEUROSCI.3740-14.2015CrossRefGoogle ScholarPubMed