Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:22:06.962Z Has data issue: false hasContentIssue false

Development of vernier acuity and grating acuity in normally reared monkeys

Published online by Cambridge University Press:  02 June 2009

Lynne Kiorpes
Affiliation:
Center for Neural Science and Department of Psychology, New York University, New York

Abstract

The developmental time courses for vernier acuity and grating acuity were measured longitudinally in infant Macaca nemestrina monkeys. Behavioral measurements of vernier and grating acuity were made at regular intervals during development. Near birth, grating acuity is relatively more mature than vernier acuity. The proportional rate of vernier acuity development is faster than that for grating acuity. During the course of development, grating acuity improves approximately 15-fold whereas vernier acuity improves about 60-fold. Both visual functions approach adult levels at about the same age, around 40 weeks postnatally. Although grating acuity develops about four times faster in monkeys than in humans, vernier acuity development in monkeys and humans does not appear to reflect the same relationship. Adult levels of vernier acuity for the monkeys are about a factor of 2 poorer than are typically reported for humans. The differential development of vernier acuity and grating acuity does not necessarily reflect development at different levels of the visual system.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aslin, R.N. & Skoczenski, A.M. (1990). Periodic vernier acuity in 3-month-old human infants. Investigative Ophthalmology and Visual Science 31 (4), 8.Google Scholar
Atkinson, J., Braddick, O. & Moar, K. (1977). Development of contrast sensitivity over the first 3 months of life in the human infant. Vision Research 17, 10371044.CrossRefGoogle ScholarPubMed
Banks, M.S. & Bennett, P.J. (1988). Optical and photoreceptor immaturities limit the spatial and chromatic vision of human neonates. Journal of the Optical Society of America 5 (12), 20592079.CrossRefGoogle ScholarPubMed
Banks, M.S. & Salapatek, P. (1978). Acuity and contrast sensitivity in 1-, 2-, and 3-month-old human infants. Investigative Ophthalmology and Visual Science 17, 361365.Google ScholarPubMed
Blakemore, C. & Vital-Durand, F. (1986). Organization and postnatal development of the monkey's lateral geniculate nucleus. Journal of Physiology 380, 453491.CrossRefGoogle ScholarPubMed
Blakemore, C. (1990). Maturation of mechanisms for efficient spatial vision. In Vision: Coding and Efficiency, ed. Blakemore, C., Cambridge: Cambridge University Press.Google Scholar
Boothe, R.G., Dobson, M.V. & Teller, D.Y. (1985). Postnatal development of vision in human and nonhuman primates. Annual Review of Neuroscience 8, 495545.CrossRefGoogle ScholarPubMed
Boothe, R.G., Kiorpes, L., Williams, R.A. & Teller, D.Y. (1988). Operant measurements of contrast sensitivity in infant macaque monkeys during normal development. Vision Research 28 (3), 387396.CrossRefGoogle ScholarPubMed
Bradley, A. & Freeman, R.D. (1982). Contrast sensitivity in children. Vision Research 22, 953959.CrossRefGoogle ScholarPubMed
Bradley, A. & Skottun, B.C. (1987). Effects of contrast and spatial frequency on vernier acuity. Vision Research 27(10), 18171824.CrossRefGoogle ScholarPubMed
Brown, A.M., Dobson, M.V. & Maier, J. (1987). Visual acuity of human infants at scotopic, mesopic and photopic luminances. Vision Research 27(10), 18451858.CrossRefGoogle ScholarPubMed
Carkeet, A., Levi, D.M. & Manny, R.E. (1990). Development of vernier and grating resolution after age 3. Investigative Ophthalmology and Visual Science 31 (4), 9.Google Scholar
Curcio, C.A., Packer, O. & Kalina, R.E. (1987). A whole mount method for sequential analysis of photoreceptor and ganglion cell topography in a single retina. Vision Research 27 (1), 915.CrossRefGoogle Scholar
Dobson, V. (1983). Clinical applications of preferential looking measures of visual acuity. Behavioural Brain Research 10, 2538.CrossRefGoogle ScholarPubMed
Fahle, M. & Schmid, M. (1988). Naso-temporal asymmetry of visual perception and of the visual cortex. Vision Research 28 (2), 293300.CrossRefGoogle ScholarPubMed
Finney, D.J. (1971). Probit Analysis, 3rd ed., Cambridge University Press.Google Scholar
Harwerth, R.S., Smith, E.L., Boltz, R.L., Crawford, M.L.J. & Von Noorden, G.K. (1983). Behavioral studies on the effect of abnormal early visual experience in monkeys: Spatial modulation sensitivity. Vision Research 23, 15011510.CrossRefGoogle ScholarPubMed
Hendrickson, A.E. & Yuodelis, C. (1984). The morphological development of the human fovea. Ophthalmology 91, 603612.CrossRefGoogle ScholarPubMed
Jacobs, D.S. & Blakemore, C. (1988). Factors limiting the postnatal development of visual acuity in the monkey. Vision Research 28 (8), 947958.CrossRefGoogle ScholarPubMed
Kiorpes, L. (1992). Effect of strabismus on the development of vernier acuity and grating acuity in monkey. Visual Neuroscience 9, 253259.CrossRefGoogle Scholar
Kiorpes, L., Carlson, M.R. & Alfi, D. (1989). Development of visual acuity in experimentally strabismic monkeys. Clinical Vision Sciences 4 (2), 95106.Google Scholar
Kiorpes, L. & Movshon, J.A. (1989a). Differential development of two visual functions in primates. Proceedings of the National Academy of Sciences of the U.S.A. 86, 89989001.CrossRefGoogle ScholarPubMed
Kiorpes, L. & Movshon, J.A. (1989b). Vernier acuity and contrast sensitivity in monkeys and humans. Optical Society of America Technical Digest Series 18, 142.Google Scholar
Kiorpes, L., Boothe, R.G., Hendrickson, A.E., Movshon, J.A., Egcers, H.M. & Cizzi, M.S. (1987). Effects of early unilateral blur on the macaque's visual system. 1. Behavioral Observations. Journal of Neuroscience 7(5), 13181326.CrossRefGoogle Scholar
Levi, D.M., Klein, S.A. & Aitsebaomo, A.P. (1985). Vernier acuity, crowding and cortical magnification. Vision Research 25(7), 963977.CrossRefGoogle ScholarPubMed
Levi, D.M. & Klein, S.A. (1982). Differences in vernier discrimination for gratings between strabismic and anisometropic amblyopes. Investigative Ophthalmology and Visual Science 23, 398407.Google ScholarPubMed
Manny, R.E. & Klein, S.A. (1984). The development of vernier acuity in infants. Current Eye Research 3, 453462.CrossRefGoogle ScholarPubMed
Manny, R.E. & Klein, S.A. (1985). A three alternative tracking paradigm to measure vernier acuity of older infants. Vision Research 25, 12451252.CrossRefGoogle ScholarPubMed
Mood, A.A., Graybill, F.A. & Boes, D.C. (1974). Introduction to the Theory of Statistics, 3rd ed., pp. 440442. New York: McGraw-Hill.Google Scholar
Murphy, K.M. & Mitchell, D.E. (1991). Vernier acuity of normal and visually deprived cats. Vision Research 31 (2), 253266.CrossRefGoogle ScholarPubMed
Packer, O., Hendrickson, A.E. & Curcio, C.A. (1990). Developmental redistribution of photoreceptors across the Macaca nemestrina (Pigtail macaque) retina. Journal of Comparative Neurology 298, 472493.CrossRefGoogle Scholar
Schein, S.J. & De Monasterio, F.M. (1987). Mapping of retinal and geniculate neurons onto striate cortex of macaque. Journal of Neuroscience 7 (4), 9961009.CrossRefGoogle ScholarPubMed
Shimojo, S., Birch, E.E., Gwiazda, J. & Held, R. (1984). Development of vernier acuity in human infants. Vision Research 24, 721728.CrossRefGoogle Scholar
Shimojo, S. & Held, R. (1987). Vernier acuity is less than grating acuity in 2- and 3-month-olds. Vision Research 27, 7786.CrossRefGoogle ScholarPubMed
Teller, D.Y. (1979). The forced-choice preferential looking procedure: A psychophysical technique for use with human infants. Infant Behavior and Development 2, 135153.CrossRefGoogle Scholar
Teller, D.Y. & Boothe, R.G. (1979). The development of vision in infant primates. Transactions of the Ophthalmological Societies of the United Kingdom 99, 333337.Google ScholarPubMed
Wässle, H., Grunert, U., Rohrenbeck, J. & Boycott, B.B. (1990). Retinal ganglion cell density and cortical magnification factor in the primate. Vision Research 30(11), 18971911.CrossRefGoogle ScholarPubMed
Westheimer, G. (1982). The spatial grain of the perifoveal visual field. Vision Research 22, 157162.CrossRefGoogle ScholarPubMed
Westheimer, G. & McKee, S.P. (1977). Spatial configurations for visual hyperacuity. Vision Research 17, 940947.CrossRefGoogle ScholarPubMed
Williams, R.A., Boothe, R.G., Kiorpes, L. & Teller, D.Y. (1981). Oblique effects in normally reared monkeys (Macaca nemestrina): Meridional variations in contrast sensitivity measured with operant techniques. Vision Research 21, 12531266.CrossRefGoogle ScholarPubMed
Wilson, H.R. (1988). Development of spatiotemporal mechanisms in infant vision. Vision Research 28, 611628.CrossRefGoogle ScholarPubMed
Yuodelis, C. & Hendrickson, A.E. (1986). A qualitative and quantitative analysis of the human fovea during development. Vision Research 26, 847855.CrossRefGoogle ScholarPubMed