Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T21:42:23.490Z Has data issue: false hasContentIssue false

Development of excitatory and inhibitory neurotransmitters in transitory cholinergic neurons, starburst amacrine cells, and GABAergic amacrine cells of rabbit retina, with implications for previsual and visual development of retinal ganglion cells

Published online by Cambridge University Press:  15 April 2010

EDWARD V. FAMIGLIETTI*
Affiliation:
Department of Surgery (Ophthalmology), Brown University, Providence, Rhode Island Division of Ophthalmology, Rhode Island Hospital, Providence, Rhode Island
SARAH J. SUNDQUIST
Affiliation:
Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285-0438.
*
*Address correspondence and reprint requests to: Edward V. Famiglietti, P. O. Box 252, Narragansett, RI 02882. E-mail: [email protected]

Abstract

Starburst amacrine cells (SACs), the only acetylcholine (ACh)-releasing amacrine cells (ACs) in adult rabbit retina, contain GABA and are key elements in the retina’s directionally selective (DS) mechanism. Unlike many other GABAergic ACs, they use glutamic acid decarboxlyase (GAD)67, not GAD65, to synthesize GABA. Using immunocytochemistry, we demonstrate the apoptosis at birth (P0) of transitory putative ACs that exhibit immunoreactivity (IR) for the ACh-synthetic enzyme choline acetyltransferase (ChAT), GAD67, and the GABA transporter, GAT1. Only a few intact, displaced ChAT-immunoreactive SAC bodies are detected at P0. At P2, ChAT-IR is detected in the two narrowly stratified substrata of starburst dendrites in the inner plexiform layer (IPL). Quantitative analysis reveals that in the first postnatal week, only a small fraction of SACs cells express ChAT- and GABA-IR. Not until the end of the second week are they expressed in all SACs. At P0, a three-tiered stratification of GABA-IR is present in the IPL, entirely different from the adult pattern of seven substrata, emerging at P3–P4, and optimally visualized at P13. At P0, GAD65 is detectable in normally placed AC bodies. At P1, GAD65-IR appears in dendrites of nonstarburst GABAergic ACs, and by P5 is robust in the adult pattern of four substrata in the IPL. GAD65-IR never co-localizes with ChAT-IR. In a temporal comparison of our data with physiological, pharmacological, and ultrastructural studies, we suggest that transitory ChAT-immunoreactive cells share with SACs production of stage II (nicotinic) waves of previsual synchronous activity in ganglion cells (GCs). Further, we conclude that (1) GAD65-immunoreactive, non-SAC GABAergic ACs are the most likely candidates responsible for the suppression of stage III (muscarinic/AMPA-kainate) waves and (2) DS responses first appear in DS GCs, when about 50% of SACs express ChAT- and GABA-IR, and in 100% of DS GCs, when expression occurs in all SACs.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthor, F.R., Keyser, K.T. & Dmitrieva, N.A. (2002). Effects of the destruction of starburst-cholinergic amacrine cells by the toxin AF64A on rabbit retinal directional selectivity. Visual Neuroscience 19, 495509.CrossRefGoogle ScholarPubMed
Amthor, F.R., Oyster, C.W. & Takahashi, E.S. (1984). Morphology of on-off direction-selective ganglion cells in the rabbit retina. Brain Research 298, 187190.CrossRefGoogle ScholarPubMed
Ariel, M. & Daw, N.W. (1982 a). Effects of cholinergic drugs on receptive field properties of rabbit retinal ganglion cells. The Journal of Physiology 324, 135160.CrossRefGoogle ScholarPubMed
Ariel, M. & Daw, N.W. (1982 b). Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells. The Journal of Physiology 324, 161185.CrossRefGoogle ScholarPubMed
Barlow, H.B., Hill, R.M. & Levick, W.R. (1964). Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. The Journal of Physiology 173, 377407.CrossRefGoogle ScholarPubMed
Barlow, H.B. & Levick, W.R. (1965). The mechanism of directionally selective units in rabbit’s retina. The Journal of Physiology 178, 477504.CrossRefGoogle ScholarPubMed
Ben-Ari, Y., Khazipov, R., Leinekugel, X., Caillard, O. & Gaiarsa, J.L. (1997). GABAA, NMDA and AMPA receptors: A developmentally regulated ‘menage a trois’. Trends in Neurosciences 20, 523529.CrossRefGoogle ScholarPubMed
Brandon, C. (1987). Cholinergic neurons in the rabbit retina: Immunocytochemical localization, and relationship to GABAergic and cholinesterase-containing neurons. Brain Research 401, 385391.CrossRefGoogle ScholarPubMed
Brandon, C. & Criswell, M.H. (1995). Displaced starburst amacrine cells of the rabbit retina contain the 67-kDa isoform, but not the 65-kDa isoform, of glutamate decarboxylase. Visual Neuroscience 12, 10531061.CrossRefGoogle Scholar
Brecha, N., Johnson, D., Peichl, L. & Wässle, H. (1988). Cholinergic amacrine cells of the rabbit retina contain glutamate decarboxylase and gamma-aminobutyrate immunoreactivity. Proceedings of the National Academy of Sciences of the United States of America 85, 61876191.CrossRefGoogle ScholarPubMed
Caldwell, J.H., Daw, N.W. & Wyatt, H.J. (1978). Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: Lateral interactions for cells with more complex receptive fields. The Journal of Physiology 276, 277298.CrossRefGoogle ScholarPubMed
Camargo De Moura Campos, L. & Hokoc, J.N. (1999). Ontogeny of cholinergic amacrine cells in the oppossum (Didelphis aurita) retina. International journal of developmental neuroscience 17, 795804.CrossRefGoogle ScholarPubMed
Casini, G., Dal Monte, M., Fornai, F., Bosco, L., Willems, D., Yang, Q., Zhou, Z.J. & Bagnoli, P. (2004). Neurokinin 1 receptor expression and substance P physiological actions are developmentally regulated in the rabbit retina. Neuroscience 124, 147160.CrossRefGoogle ScholarPubMed
Catsicas, M., Bonness, V., Becker, D. & Mobbs, P. (1998). Spontaneous Ca2+ transients and their transmission in the developing chick retina. Current Biology 8, 283286.CrossRefGoogle ScholarPubMed
Conley, M., Fitzpatrick, D. & Lachica, E.A. (1986). Laminar asymmetry in the distribution of choline acetyltransferase-immunoreactive neurons in the retina of the tree shrew (Tupaia belangeri). Brain Research 399, 332338.CrossRefGoogle ScholarPubMed
Crook, D.K. & Pow, D.V. (1997). Analysis of the distribution of glycine and GABA in amacrine cells of the developing rabbit retina: A comparison with the ontogeny of a functional GABA transport system in retinal neurons. Visual Neuroscience 14, 751763.CrossRefGoogle ScholarPubMed
Cuenca, N., Deng, P., Linberg, K.A., Fisher, S.K. & Kolb, H. (2003). Choline acetyltransferase is expressed by non-starburst amacrine cells in the ground squirrel retina. Brain Research 964, 2130.CrossRefGoogle ScholarPubMed
Dann, J.F. (1989). Cholinergic amacrine cells in the developing cat retina. The Journal of Comparative Neurology 289, 143155.CrossRefGoogle ScholarPubMed
Euler, T., Detwiler, P.B. & Denk, W. (2002). Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845852.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1981). Starburst amacrines: 2 mirror-symmetrical retinal networks. Investigative Ophthalmology & Visual Science 20, S204.Google Scholar
Famiglietti, E.V. (1983 a). ‘Starburst’ amacrine cells and cholinergic neurons: Mirror-symmetric on and off amacrine cells of rabbit retina. Brain Research 261, 138144.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1983 b). On and off pathways through amacrine cells in mammalian retina: The synaptic connections of “starburst” amacrine cells. Vision Research 23, 12651279.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1985). Starburst amacrine cells: Morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons. The Journal of Neuroscience 5, 562577.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1987). Starburst amacrine cells in cat retina are associated with bistratified, presumed directionally selective, ganglion cells. Brain Research 413, 404408.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1991). Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction. The Journal of Comparative Neurology 309, 4070.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (1992 a). New metrics for analysis of dendritic branching patterns demonstrating similarities and differences in ON and ON-OFF directionally selective retinal ganglion cells. The Journal of Comparative Neurology 324, 295321.CrossRefGoogle Scholar
Famiglietti, E.V. (1992 b). Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina. The Journal of Comparative Neurology 324, 322335.CrossRefGoogle Scholar
Famiglietti, E.V. (1993). A ‘bilayer’ model of directional selectivity in rabbit retina. Investigative Ophthalmology & Visual Science 34, S985.Google Scholar
Famiglietti, E.V. (2002). A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. Visual Neuroscience 19, 145162.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. (2005). Synaptic organization of “complex” ganglion cells in rabbit retina: Type and arrangement of inputs to directionally selective and local-edge-detector cells. The Journal of Comparative Neurology 484, 357391.CrossRefGoogle ScholarPubMed
Famiglietti, E.V. & Sharpe, S.J. (1994). Development of ChAT and GAD immunoreactivity in relation to starburst amacrine cells of rabbit retina. Society for Neuroscience Abstracts 20, 729.Google Scholar
Famiglietti, E.V. & Tumosa, N. (1986). The organization of cholinergic neurons in rabbit retina. In Retinal Signal Systems, Degenerations and Transplants, eds. Agardh, E. & Ehinger, B., pp. 3746. Amsterdam, The Netherlands: Elsevier.Google Scholar
Famiglietti, E.V. & Tumosa, N. (1987). Immunocytochemical staining of cholinergic amacrine cells in rabbit retina. Brain Research 413, 398403.CrossRefGoogle ScholarPubMed
Farah, M.H. & Easter, S.S. Jr (2005). Cell birth and death in the mouse retinal ganglion cell layer. The Journal of Comparative Neurology 489, 120134.CrossRefGoogle ScholarPubMed
Feller, M.B. (2004). Retinal waves drive calcium transients in undifferentiated retinal cells. Focus on “spontaneous waves in the ventricular zone of developing mammalian retina”. Journal of Neurophysiology 91, 1940.CrossRefGoogle Scholar
Feller, M.B., Wellis, D.P., Stellwagen, D., Werblin, F.S. & Shatz, C.J. (1996). Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272, 11821187.CrossRefGoogle ScholarPubMed
Galli-Resta, L. & Novelli, E. (2000). The effects of natural cell loss on the regularity of the retinal cholinergic arrays. The Journal of Neuroscience 20, RC60.CrossRefGoogle ScholarPubMed
Galli-Resta, L., Resta, G., Tan, S.S. & Reese, B.E. (1997). Mosaics of islet-1-expressing amacrine cells assembled by short-range cellular interactions. The Journal of Neuroscience 17, 78317838.CrossRefGoogle ScholarPubMed
Hausselt, S.E., Euler, T., Detwiler, P.B. & Denk, W. (2007). A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells. PLoS Biology 5, e185.CrossRefGoogle ScholarPubMed
Hinds, J.W. & Hinds, P.L. (1978). Early development of amacrine cells in the mouse retina: An electron microscopic, serial section analysis. The Journal of Comparative Neurology 179, 277300.CrossRefGoogle ScholarPubMed
Hinds, J.W. & Hinds, P.L. (1983). Development of retinal amacrine cells in the mouse embryo: Evidence for two modes of formation. The Journal of Comparative Neurology 213, 123.CrossRefGoogle ScholarPubMed
Hu, M., Bruun, A. & Ehinger, B. (1999). Expression of GABA transporter subtypes (GAT1, GAT3) in the developing rabbit retina. Acta Ophthalmologica Scandinavica 77, 261265.CrossRefGoogle ScholarPubMed
Kaufman, D.L., Houser, C.R. & Tobin, A.J. (1991). Two forms of the gamma-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. Journal of Neurochemistry 56, 720723.CrossRefGoogle ScholarPubMed
Kim, I.B., Lee, E.J., Kim, M.K., Park, D.K. & Chun, M.H. (2000). Choline acetyltransferase-immunoreactive neurons in the developing rat retina. The Journal of Comparative Neurology 427, 604616.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Knabe, W., Washausen, S., Happel, N. & Kuhn, H.J. (2007). Development of starburst cholinergic amacrine cells in the retina of Tupaia belangeri. The Journal of Comparative Neurology 502, 584597.CrossRefGoogle ScholarPubMed
Lee, S. & Zhou, Z.J. (2006). The synaptic mechanism of direction selectivity in distal processes of starburst amacrine cells. Neuron 51, 787799.CrossRefGoogle ScholarPubMed
Masland, R.H. (1977). Maturation of function in the developing rabbit retina. The Journal of Comparative Neurology 175, 275286.CrossRefGoogle ScholarPubMed
Masland, R.H. & Ames, A. III (1976). Responses to acetylcholine of ganglion cells in an isolated mammalian retina. Journal of Neurophysiology 39, 12201235.CrossRefGoogle Scholar
Masland, R.H. & Mills, J.W. (1979). Autoradiographic identification of acetylcholine in the rabbit retina. The Journal of Cell Biology 83, 159178.CrossRefGoogle ScholarPubMed
Masland, R.H., Mills, J.W. & Hayden, S.A. (1984). Acetylcholine-synthesizing amacrine cells: Identification and selective staining by using radioautography and fluorescent markers. Proceedings of the Royal Society of London B: Biological Sciences 223, 79100.Google ScholarPubMed
McArdle, C.B., Dowling, J.E. & Masland, R.H. (1977). Development of outer segments and synapses in the rabbit retina. The Journal of Comparative Neurology 175, 253274.CrossRefGoogle ScholarPubMed
Meister, M., Wong, R.O., Baylor, D.A. & Shatz, C.J. (1991). Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science 252, 939943.CrossRefGoogle ScholarPubMed
Messersmith, E.K. & Redburn, D.A. (1992). Gamma-aminobutyric acid immunoreactivity in multiple cell types of the developing rabbit retina. Visual Neuroscience 8, 201211.CrossRefGoogle ScholarPubMed
Millar, T., Ishimoto, I., Johnson, C.D., Epstein, M.L., Chubb, I.W. & Morgan, I.G. (1985). Cholinergic and acetylcholinesterase-containing neurons of the chicken retina. Neuroscience Letters 61, 311316.CrossRefGoogle ScholarPubMed
Mooney, R., Penn, A.A., Gallego, R. & Shatz, C.J. (1996). Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17, 863874.CrossRefGoogle ScholarPubMed
Mosinger, J. & Yazulla, S. (1987). Double-label analysis of GAD- and GABA-like immunoreactivity in the rabbit retina. Vision Research 27, 2330.CrossRefGoogle ScholarPubMed
Osborne, N.N., Patel, S., Beaton, D.W. & Neuhoff, V. (1986). GABA neurones in retinas of different species and their postnatal development in situ and in culture in the rabbit retina. Cell and Tissue Research 243, 117123.CrossRefGoogle ScholarPubMed
Oyster, C.W., Takahashi, E.S., Fry, K.R. & Lam, D.M. (1987). Ganglion cell density in albino and pigmented rabbit retinas labeled with a ganglion cell-specific monoclonal antibody. Brain Research 425, 2533.CrossRefGoogle ScholarPubMed
Oyster, C.W., Takahashi, E.S. & Hurst, D.C. (1981). Density, soma size, and regional distribution of rabbit retinal ganglion cells. The Journal of Neuroscience 1, 13311346.CrossRefGoogle ScholarPubMed
Penn, A.A., Riquelme, P.A., Feller, M.B. & Shatz, C.J. (1998). Competition in retinogeniculate patterning driven by spontaneous activity. Science 279, 21082112.CrossRefGoogle ScholarPubMed
Pow, D.V., Crook, D.K. & Wong, R.O. (1994). Early appearance and transient expression of putative amino acid neurotransmitters and related molecules in the developing rabbit retina: An immunocytochemical study. Visual Neuroscience 11, 11151134.CrossRefGoogle ScholarPubMed
Reese, B.E. & Colello, R.J. (1992). Neurogenesis in the retinal ganglion cell layer of the rat. Neuroscience 46, 419429.CrossRefGoogle ScholarPubMed
Reese, B.E., Raven, M.A., Giannotti, K.A. & Johnson, P.T. (2001). Development of cholinergic amacrine cell stratification in the ferret retina and the effects of early excitotoxic ablation. Visual Neuroscience 18, 559570.CrossRefGoogle ScholarPubMed
Resta, V., Novelli, E., Di Virgilio, F. & Galli-Resta, L. (2005). Neuronal death induced by endogenous extracellular ATP in retinal cholinergic neuron density control. Development 132, 28732882.CrossRefGoogle ScholarPubMed
Robinson, S.R., Dreher, B. & McCall, M.J. (1989). Nonuniform retinal expansion during the formation of the rabbit’s visual streak: Implications for the ontogeny of mammalian retinal topography. Visual Neuroscience 2, 201219.CrossRefGoogle ScholarPubMed
Robinson, S.R., Horsburgh, G.M., Dreher, B. & McCall, M.J. (1987). Changes in the numbers of retinal ganglion cells and optic nerve axons in the developing albino rabbit. Brain Research 432, 161174.CrossRefGoogle ScholarPubMed
Rodieck, R.W. & Marshak, D.W. (1992). Spatial density and distribution of choline acetyltransferase immunoreactive cells in human, macaque, and baboon retinas. The Journal of Comparative Neurology 321, 4664.CrossRefGoogle ScholarPubMed
Sernagor, E. & Grzywacz, N.M. (1999). Spontaneous activity in developing turtle retinal ganglion cells: Pharmacological studies. The Journal of Neuroscience 19, 38743887.CrossRefGoogle ScholarPubMed
Sernagor, E., Young, C. & Eglen, S.J. (2003). Developmental modulation of retinal wave dynamics: Shedding light on the GABA saga. The Journal of Neuroscience 23, 76217629.CrossRefGoogle ScholarPubMed
Shatz, C.J. & Stryker, M.P. (1988). Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. Science 242, 8789.CrossRefGoogle ScholarPubMed
Shields, C.R., Tran, M.N., Wong, R.O. & Lukasiewicz, P.D. (2000). Distinct ionotropic GABA receptors mediate presynaptic and postsynaptic inhibition in retinal bipolar cells. The Journal of Neuroscience 20, 26732682.CrossRefGoogle ScholarPubMed
Stacy, R.C. & Wong, R.O.L. (2003). Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. The Journal of Comparative Neurology 456, 154166.CrossRefGoogle ScholarPubMed
Syed, M.M., Lee, S., Zheng, J. & Zhou, Z.J. (2004). Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. The Journal of Physiology 560, 533549.CrossRefGoogle ScholarPubMed
Tauchi, M. & Masland, R.H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proceedings of the Royal Society of London B: Biological Sciences 223, 101119.Google ScholarPubMed
Vaney, D.I. (1990). The mosaic of amacrine cells in the mammalian retina. In Progress in Retinal Research, Vol. 9, ed. Osborne, N. & Chader, J., pp. 49100. Oxford: Pergamon Press.Google Scholar
Vaney, D.I. & Young, H.M. (1988). GABA-like immunoreactivity in cholinergic amacrine cells of the rabbit retina. Brain Research 438, 369373.CrossRefGoogle ScholarPubMed
Vaughn, J.E., Famiglietti, E.V. Jr, Barber, R.P., Saito, K., Roberts, E. & Ribak, C.E. (1981). GABAergic amacrine cells in rat retina: Immunocytochemical identification and synaptic connectivity. The Journal of Comparative Neurology 197, 113127.CrossRefGoogle ScholarPubMed
Wong, R.O. (1995). Cholinergic regulation of [Ca2+]i during cell division and differentiation in the mammalian retina. The Journal of Neuroscience 15, 26962706.CrossRefGoogle ScholarPubMed
Wong, R.O. (1999). Retinal waves and visual system development. Annual Review of Neuroscience 22, 2947.CrossRefGoogle ScholarPubMed
Wong, R.O. & Collin, S.P. (1989). Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina. The Journal of Comparative Neurology 287, 164178.CrossRefGoogle ScholarPubMed
Wong, W.T., Sanes, J.R. & Wong, R.O. (1998). Developmentally regulated spontaneous activity in the embryonic chick retina. The Journal of Neuroscience 18, 88398852.CrossRefGoogle ScholarPubMed
Wyatt, H.J. & Daw, N.W. (1976). Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science 191, 204205.CrossRefGoogle ScholarPubMed
Yamagata, M. & Sanes, J.R. (2008). Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451, 465469.CrossRefGoogle ScholarPubMed
Yoshida, K., Watanabe, D., Ishikane, H., Tachibana, M., Pastan, I. & Nakanishi, S. (2001). A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30, 771780.CrossRefGoogle ScholarPubMed
Young, R.W. (1984). Cell death during differentiation of the retina in the mouse. The Journal of Comparative Neurology 229, 362373.CrossRefGoogle ScholarPubMed
Zheng, J., Lee, S. & Zhou, Z.J. (2004). A developmental switch in the excitability and function of the starburst network in the mammalian retina. Neuron 44, 851864.CrossRefGoogle ScholarPubMed
Zheng, J., Lee, S. & Zhou, Z.J. (2006). A transient network of intrinsically bursting starburst cells underlies the generation of retinal waves. Nature Neuroscience 9, 363371.CrossRefGoogle ScholarPubMed
Zhou, Z.J. (1998). Direct participation of starburst amacrine cells in spontaneous rhythmic activities in the developing mammalian retina. The Journal of Neuroscience 18, 41554165.CrossRefGoogle ScholarPubMed
Zhou, Z.J. (2001). The function of the cholinergic system in the developing mammalian retina. Progress in Brain Research 131, 599613.CrossRefGoogle ScholarPubMed
Zhou, Z.J. & Zhao, D. (2000). Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. The Journal of Neuroscience 20, 65706577.CrossRefGoogle ScholarPubMed