Published online by Cambridge University Press: 02 June 2009
Dendrites of retinal ganglion cells (RGCs) tend to be distributed preferentially toward areas of reduced RGC density. This, however, does not occur in the retina of normal pigmented rats, in which it has been suggested that the centro-peripheral gradient of RGC density is too shallow to provide directional guidance to growing dendrites. In this study, laterally displaced dendrites of RGCs retrogradely labeled with horseradish peroxidase were related to cell density gradients induced experimentally in the rat retina. Neonatal unilateral lesions of the optic tract produced retrograde degeneration of contralaterally projecting RGCs, but spared ipsilaterally projecting neurons in the same retina. These lesions created an anomalous temporal to nasal gradient of cell density across the decussation line, opposite to the nasal to temporal gradient found along the same axis in either normal rats or rats that had the contralateral eye removed at birth. RGCs in rats that received optic tract lesions had their dendrites displaced laterally toward the depleted nasal retina, while in either normal or enucleated rats there was no naso-temporal asymmetry. The lateral displacement affected both primary dendrites and higher-order branches. However, the gradient of cell density after optic tract lesions was less steep than the gradient in either normal or enucleated rats. To test for the presence of steeper gradients at early stages of development, RGC density gradients were also examined at postnatal day 5 (P5). In normal rats, the RGCs were homogeneously distributed throughout the retina, while rats given optic tract lesions at birth already showed a temporo-nasal density gradient at P5. Still, this anomalous gradient was less steep than that found in normal adults. It is concluded that the time course, rather than the steepness of the RGC density gradient, is the major determinant of the lateral displacement of dendritic arbors with respect to the soma in developing RGCs. The data are consistent with the idea that the overall shape of dendritic arbors depends in part on dendritic competition during retinal development.