Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T19:36:28.980Z Has data issue: false hasContentIssue false

Contribution of the retinal ON channels to scotopic and photopic spectral sensitivity

Published online by Cambridge University Press:  02 June 2009

Earl L. Smith III*
Affiliation:
College of Optometry, University of Houston, Houston
Ronald S. Harwerth
Affiliation:
College of Optometry, University of Houston, Houston
M.L.J. Crawford
Affiliation:
Sensory Sciences Center, University of Texas Graduate School of Biomedical Sciences, Houston
Gary C. Duncan
Affiliation:
College of Optometry, University of Houston, Houston
*
Correspondence and reprint requests to: Earl L. Smith, III, College of Optometry, University of Houston, 4800 Calhoun Blvd., Houston, TX 77204-6052, USA.

Abstract

Visual information encoded by the middle-wavelength-sensitive (MWS) and long-wavelength-sensitive (LWS) cones in the primate retina are processed by both depolarizing (ON) and hyperpolarizing (OFF) bipolar cells. In contrast, signals from the short-wavelength-sensitive (SWS) cones and dark-adapted rod photoreceptors are thought to be carried almost exclusively by ON bipolar cells (Gouras & Evers, 1985). Consequently, it would be expected that functional inactivation of the retinal ON channels at the bipolar cell level would produce selective deficits in visual functions mediated by rods and SWS cones. We have examined this hypothesis by injecting rhesus monkeys with 2-amino-4-phosphonobutyric acid (APB), a pharmacological agent that reduces the responsiveness of retinal ON neurons, and psychophysically measuring the changes in spectral sensitivities. Under adaptation conditions that isolated rod function, APB caused, as expected, a substantial loss in rod-mediated spectral sensitivity. However, under photopic conditions, cone-mediated spectral sensitivity, including that associated with the SWS cones, was relatively unaffected. These results demonstrate distinct organizational differences between the rod and cone systems; specifically, they indicate that the rod system is more dependent upon retinal ON channels than the cone system. Our failure to find a selective visual deficit related to SWS cone function under photopic viewing conditions suggests that the OFF system can mediate stimulus detection throughout the visible spectrum and that the ability of the OFF system to process signals from the SWS cones has been underestimated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arkin, M.S. & Miller, R.F. (1987). Subtle actions of 2-amino-4-phos-phonobutyrate (APB) on the OFF pathway in the mudpuppy retina. Brain Research 426, 142148.CrossRefGoogle ScholarPubMed
Armington, J.C. (1974). The Electroretinogram. New York: Academic Press.Google Scholar
Baylor, D.A., Nunn, B.J. & Schnaph, J.L. (1987). Spectral sensitivity of cones of the monkey. Journal of Physiology (London) 390, 145160.CrossRefGoogle ScholarPubMed
Blake, R. & Fox, R. (1973). The psychophysical inquiry into binocular summation. Perception and Psychophysics 14, 161185.CrossRefGoogle Scholar
Bolz, J., Wässle, H. & Their, P. (1984). Pharmacological modulation of ON and OFF ganglion cells in the cat retina. Neuroscience 12, 875885.CrossRefGoogle Scholar
Dawis, S.M. (1981). Polynomial expressions of pigment nomograms. Vision Research 21, 14271430.CrossRefGoogle ScholarPubMed
Monasterio, F.M.de (1978). Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. Journal of Neurophysiology 41, 14181434.CrossRefGoogle ScholarPubMed
Monasterio, F.M.de (1979). Asymmetry of ON and OFF pathways of blue-sensitive cones in the retina of macaques. Brain Research 166, 3948.CrossRefGoogle Scholar
Monasterio, F.M.de, Gouras, P. & Tolhurst, D.J. (1975). Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. Journal of Physiology (London) 251, 197216.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Lennie, P. (1984). Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 219240.CrossRefGoogle ScholarPubMed
Devalois, R.L., Morgan, H.C., Polson, M.C., Mead, W.R. & Hull, E.M. (1974). Psychophysical studies of monkey vision, I: Macaque luminosity and color vision tests. Vision Research 14, 5367.CrossRefGoogle Scholar
Drum, B., Armaly, M.F. & Huppert, W. (1986). Scotopic sensitivity loss in glaucoma. Archives of Ophthalmology 104, 712717.CrossRefGoogle ScholarPubMed
Evers, H.U & Gouras, P. (1986). Three cone mechanisms in the primate electroretinogram: two with, one without off-center bipolar responses. Vision Research 26, 245254.CrossRefGoogle ScholarPubMed
Gouras, P. & Evers, H.U. (1985). The neurocircuitry of primate retina. In Neurocircuitry of the retina: A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 233244. New York: Elsevier Press.Google Scholar
Gouras, P. & Zrenner, E. (1978). The blue cone system. International Congress of Ophthalmology 23, 397–384.Google Scholar
Graham, C.H. & Bartlett, N.R. (1939). The relation of size of stimulus and intensity in the human eye, II: Intensity thresholds for red and violet light. Journal of Experimental Psychology 24, 574587.CrossRefGoogle Scholar
Green, D.G. (1968). The contrast sensitivity of the colour mechanisms of the human eye. Journal of Physiology (London) 196, 415429.CrossRefGoogle ScholarPubMed
Green, D.G. (1972). Visual acuity in the blue cone monochromat. Journal of Physiology (London) 222, 419426.CrossRefGoogle ScholarPubMed
Hartline, H.K. (1938). The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. American Journal of Physiology 121, 400415.CrossRefGoogle Scholar
Harwerth, R.S., Boltz, R.L. & Smith, E.L. III., (1980). Psychophysical evidence for sustained and transient channels in the monkeys visual system. Vision Research 20, 1522.CrossRefGoogle ScholarPubMed
Harwerth, R.S. & Sperling, H.G. (1975). Effects of intense visible radiation on the increment-threshold spectral sensitivity of the rhesus monkey eye. Vision Research 15, 11931204.CrossRefGoogle ScholarPubMed
Harwerth, R.S. & Smith, E.L. III. (1985 a). The rhesus monkey as a model for normal vision of humans. American Journal of Optometry and Physiological Optics 62, 633641.CrossRefGoogle Scholar
Harwerth, R.S. & Smith, E.L. III. (1985 b). Binocular summation in man and monkey. American Journal of Optometry and Physiological Optics 62, 439446.CrossRefGoogle ScholarPubMed
Horton, J.C. & Sherk, H. (1984). Receptive-field properties in the cat's lateral geniculate nucleus in the absence of ON-center retinal input. Journal of Neuroscience 4, 374380.CrossRefGoogle ScholarPubMed
King-Smith, P.E. & Carden, D. (1979). Luminance and opponent color contributions to visual detection and adaptation and to temporal and spatial integration. Journal of the Optical Society of American, 709717.Google Scholar
Knapp, A.G. & Schiller, P.H. (1984). The contribution of ON bipolar cells to the electroretinogram of rabbits and monkeys. Vision Research 24, 18411846.CrossRefGoogle Scholar
Kolb, H. (1977). The organization of the outer plexiform layer in the retina of the cat: electron microscopic observations. Journal of Neurocytology 6, 131153.CrossRefGoogle ScholarPubMed
Kolb, H. & Nelson, R. (1983). Rod pathways in the retina of the cat. Vision Research 23, 301312.CrossRefGoogle ScholarPubMed
Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 3768.CrossRefGoogle ScholarPubMed
Malpeli, J.G. & Schiller, P.H. (1978). Lack of blue OFF-center cells in the visual system of the monkey. Brain Research 141, 385389.CrossRefGoogle ScholarPubMed
Mariani, A.P. (1984 a). Bipolar cells in monkey retina selective for cones likely to be blue sensitive. Nature 308, 184186.CrossRefGoogle ScholarPubMed
Mariani, A.P. (1984 b). The neuronal organization of the outer plexiform layer of the primate retina. International Review of Cytology 86, 285320.CrossRefGoogle ScholarPubMed
Marks, W.B., Dobelle, W.H. & MacNichol, E.F. (1964). Visual pigments of single primate cones. Science 143, 11811182.CrossRefGoogle ScholarPubMed
Massey, S.C., Redburn, D.A. & Crawford, M.L.J. (1983). The effects of 2-amino-4-phosphonobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina. Vision Research 23, 16071613.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Pasternak, T. (1983). APB affects increment and decrement thresholds of macaques. Investigative Ophthalmology and Visual Science (Suppl.) 24, 144.Google Scholar
Miller, R.F. & Slaughter, M.M. (1986). Excitatory amino-acid receptors of the retina: diversity of subtypes and conductance mechanisms. Trends in Neuroscience 9, 211218.CrossRefGoogle Scholar
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology (London) 283, 5377.CrossRefGoogle ScholarPubMed
Müller, F., Wässle, H. & Voigt, T. (1988). Pharmacological modulation of the rod pathway in the cat retina. Journal of Neurophysiology 59, 16571672.CrossRefGoogle ScholarPubMed
Nelson, R. (1977). Cat cones have rod input: a comparison of response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172, 109136.CrossRefGoogle ScholarPubMed
Nelson, R. & Kolb, H. (1983). Synaptic patterns and response properties of bipolar and ganglion cells in the cat retina. Vision Research 23, 11831195.CrossRefGoogle ScholarPubMed
Ohzawa, I. & Freeman, R.D. (1986). The binocular organization of simple cells in the cat's visual cortex. Journal of Neurophysiology 56, 221242.CrossRefGoogle ScholarPubMed
Powers, M., DeMarco, P. & Bilotta, J. (1988). APB eliminates ERG b-wave but not optic nerve “ON” response in goldfish. Investigative Ophthalmology and Visual Science (Suppl.) 29, 104.Google Scholar
Raviola, E. & Gilula, N.B. (1975). Intramembrane organization of specialized contacts in the outer plexiform layer of the retina. Journal of Cell Biology 65, 192222.CrossRefGoogle ScholarPubMed
Saito, T., Konod, H. & Toyoda, J.I. (1979). Ionic mechanisms of two types of ON-center bipolar cells in the carp retina. I. The responses to central illumination. Journal of General Physiology 73, 7390.CrossRefGoogle ScholarPubMed
Schiller, P.H. (1982). Central connections of the retinal ON and OFF pathways. Nature 297, 580583.CrossRefGoogle ScholarPubMed
Schiller, P.H. (1984). The connections of the retinal ON and OFF channels to the lateral geniculate nucleus of the monkey. Vision Research 24, 923932.CrossRefGoogle Scholar
Schiller, P.H., Sandell, J.H. & Maunsell, J.H.R. (1986). Functions of the ON and OFF channels of the visual system. Nature 322, 824825.CrossRefGoogle ScholarPubMed
Shiells, R.S., Faulk, G. & Naghshineh, S. (1981). Action of glutamate and aspartate analogues on rod horizontal and bipolar cells. Nature 294, 592594.CrossRefGoogle ScholarPubMed
Slaughter, M.M. & Miller, R.F. (1981). 2-amino-4-phosphonobutyric acid: a new tool for retina research. Science 211, 182185.CrossRefGoogle ScholarPubMed
Slaughter, M.M. & Miller, R.F. (1985 a). The role of glutamate receptors in information processing in the distal retina. In Neurocircuitry of the retina: A Cajal Memorial, ed. Gallego, A. & Gouras, P., pp. 233244. New York: Elsevier Press.Google Scholar
Slaughter, M.M. & Miller, R.F. (1985 b). Characterization of an extended glutamate receptor of the ON bipolar neuron in the vertebrate retina. Journal of Neuroscience 5, 224233.CrossRefGoogle ScholarPubMed
Smith, E.L. III., Harwerth, R.S. & Crawford, M.L.J. (1985). Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia. Investigative Ophthalmology and Visual Science 26, 330342.Google ScholarPubMed
Smith, R.G., Freed, M.A. & Sterling, P. (1986). Microcircuitry of the dark-adapted cat retina: functional architecture of rod-cone network. Journal of Neuroscience 6, 35053517.CrossRefGoogle ScholarPubMed
Sperling, H.G. & Harwerth, R.S. (1971). Red-green cone interactions in the increment-threshold spectral sensitivity of primates. Science 172, 180184.CrossRefGoogle ScholarPubMed
Stebbins, W.C. (1966). Auditory reaction time and the derivation of equal loudness contours for the monkey. Journal of Experimental Animal Behavior 9, 135142.CrossRefGoogle ScholarPubMed
Sterling, P. (1983). Microcircuitry of the cat retina. Annual Review of Neuroscience 6, 149185.CrossRefGoogle ScholarPubMed
Sterling, P., Freed, M.A. & Smith, R.G. (1986). Microcircuitry and functional architecture of the cat retina. Trends in Neuroscience 9, 186192.CrossRefGoogle Scholar
Werblin, F.S. & Dowling, J.E. (1969). Organization of the retina of the mudpuppy (Necturus maculosus), II: Intracellular recording. Journal of Neurophysiology 32, 339354.CrossRefGoogle ScholarPubMed
Wiesel, T.N. & Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral genicualate body of the rhesus monkey. Journal of Neurophysiology 29, 11151156.CrossRefGoogle ScholarPubMed
Zrenner, E. (1983). Neurophysiological Aspects of Color Vision in Primates. New York: Springer-Verlag, pp. 1855.CrossRefGoogle Scholar