Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T23:20:17.079Z Has data issue: false hasContentIssue false

Contrast response of temporally sparse dichoptic multifocal visual evoked potentials

Published online by Cambridge University Press:  02 June 2005

TED MADDESS
Affiliation:
Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra, Australia
ANDREW CHARLES JAMES
Affiliation:
Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra, Australia
ELIZABETH ANNE BOWMAN
Affiliation:
Centre for Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra, Australia Centre for Visual Sciences, John Curtin School of Medical Research, Australian National University, Canberra, Australia

Abstract

Temporally sparse stimuli have been found to produce larger multifocal visual evoked potentials than rapid contrast-reversal stimuli. We compared the contrast-response functions of conventional contrast-reversing (CR) stimuli and three grades of temporally sparse stimuli, examining both the changes in response amplitude and signal-to-noise ratio (SNR). All stimuli were presented dichoptically to normal adult human subjects. One stimulus variant, the slowest pattern pulse, had interleaved monocular and binocular stimuli. Response amplitudes and SNRs were similar for all stimuli at contrast 0.4 but grew faster with increasing contrast for the sparser stimuli. The best sparse stimulus provided an SNR improvement that corresponded to a recording time improvement of 2.6 times relative to that required for contrast reversing stimuli. Multiple regression of log-transformed response metrics characterized the contrast-response functions by fitting power-law relationships. The exponents for the two sparsest stimuli were significantly larger (P < 0.001) than for the CR stimuli, as were the mean response amplitudes and signal-to-noise ratios for these stimuli. The contrast-dependent response enhancement is discussed with respect to the possible influences of rapid retinal contrast gain control, or intracortical and cortico-geniculate feedback.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreissen, J. & Bouma, H. (1976). Eccentric vision: Adverse interactions between line segments. Vision Research 16, 7178.CrossRefGoogle Scholar
Atkin, A., Wolkstein, M., Bodis-Wollner, I., Anders, M., Kels, B., & Podos, S.M. (1980). Interocular comparison of contrast sensitivities in glaucoma patients and suspects. British Journal of Ophthalmology 64, 858862.CrossRefGoogle Scholar
Baseler, H.A. & Sutter, E.E. (1997). M and P components of the VEP and their visual field distribution. Vision Research 37, 675690.CrossRefGoogle Scholar
Baseler, H.A., Sutter, E.E., Klein, S.A., & Carney, T. (1994). The topography of visual evoked response properties across the visual field. Electroencephalography and Clinical Neurophysiology 90, 6581.CrossRefGoogle Scholar
Benardete, E.A. & Kaplan, E. (1999). The dynamics of primate retinal ganglion cells. Visual Neuroscience 16, 344368.CrossRefGoogle Scholar
Benardete, E.A., Kaplan, E., & Knight, B.W. (1992). Contrast gain control in the primate retina: P cells are not X-like,some M cells are. Visual Neuroscience 8, 483486.CrossRefGoogle Scholar
Di Russo, F., Martinez, A., Sereno, M.I., Pitzalis, S., & Hillyard, S.A. (2002). Cortical sources of the early components of the visual evoked potential. Human Brain Mapping 15, 95111.CrossRefGoogle Scholar
Fortune, B. & Hood, D.C. (2003). Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs. Investigative Ophthalmology and Visual Science 44, 13641375.CrossRefGoogle Scholar
Goldberg, I., Graham, S.L., & Klistorner, A.I. (2002). Multifocal objective perimetry in the detection of glaucomatous field loss. American Journal of Ophthalmology 133, 2939.CrossRefGoogle Scholar
Hasegawa, S. & Abe, H. (2001). Mapping of glaucomatous visual field defects by multifocal VEPs. Investigative Ophthalmology and Visual Science 42, 33413348.Google Scholar
Hoffmann, M.B., Straube, S., & Bach, B. (2003). Pattern-onset stimulation boosts central multifocal VEP responses. Journal of Vision 3, 432439.Google Scholar
Hood, D.C., Odel, J.G., & Zhang, X. (2000a). Tracking the recovery of local optic nerve function after optic neuritis: A multifocal VEP study. Investigative Ophthalmology and Visual Science 41, 40324038.Google Scholar
Hood, D.C., Zhang, X., Greenstein, V.C., Kangovi, S., Odel, J.G., Liebmann, M.J., & Ritch, R. (2000b). An interocular comparison of the multifocal VEP: A possible technique for detecting local damage to the optic nerve. Investigative Ophthalmology and Visual Science 41, 15801587.Google Scholar
James, A.C. (2003). The pattern pulse multifocal visual evoked potential. Investigative Ophthalmology and Visual Science 44, 879890.CrossRefGoogle Scholar
James, A.C. & Maddess, T. (2000). Method and apparatus for assessing neural function by sparse stimuli. PCT Patent No. WO 0172211.
James, A.C., Ruseckaite, R., & Maddess, T. (2005). Effect of temporal sparseness and dichoptic presentation on multifocal visual evoked potentials. Visual Neuroscience in press.CrossRefGoogle Scholar
Jeffreys, D.A. (1971). Cortical source locations of pattern-related visual evoked potentials recorded from the human scalp. Nature 229, 502504.CrossRefGoogle Scholar
Jeffreys, D.A. & Axford, J.G. (1972). Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Experimental Brain Research 16, 121.Google Scholar
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Science of the U.S.A. 83, 27552557.CrossRefGoogle Scholar
Kitterle, F.L. & Corwin, T.R. (1979). Enhancement of apparent contrast in flashed sinusoidal gratings. Vision Research 19, 3339.CrossRefGoogle Scholar
Klein, S. (1992). Optimizing the estimation of nonlinear kernels. In Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks, ed. Pinter, R. & Nabet, B., pp. 3174. Ann Arbor, Michigan: CRC Press.
Klistorner, A., Crewther, D.P., & Crewther, S.G. (1997). Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP. Vision Research 37, 21612169.CrossRefGoogle Scholar
Klistorner, A.I., Graham, S.L., Grigg, J.R., & Billson, F.A. (1998). Electrode position and the multi-focal visual-evoked potential: Role in objective visual field assesment. Australian and New Zealand Journal of Ophthalmology 26, 9194.CrossRefGoogle Scholar
Kulikowski, J.J. (1972). Relation of psychophycis and electrophysiology. Trace 6, 6469.Google Scholar
Lee, Y.W. & Schetzen, M. (1965). Measurement of Wiener kernels of a non-linear system by cross-correlation. International Journal of Control 2, 237254.CrossRefGoogle Scholar
Maddess, T. & James, A.C. (1998). Simultaneous binocular assessment of multiple optic nerve and cortical regions in diseases affecting nerve conduction. USA Patent No. 6,315,414.
Maddess, T., James, A.C., Ruseckaite, R., & Bowman, E. (2003). Hierarchical decomposition of multifocal visual evoked potential responses to dichoptic contrast reversing and temporally sparse stimuli. Investigative Ophthalmology and Visual Science 44, 4198.Google Scholar
Maddess, T. & Kulikowski, J.J. (1999). Apparent fineness of stationary compound gratings. Vision Research 39, 34043416.CrossRefGoogle Scholar
Maddess, T., McCourt, M.E., Blakeslee, B., & Cunningham, R.B. (1988). Factors governing the adaptation of cells in Area-17 of the cat visual cortex. Biological Cybernetics 59, 229236.CrossRefGoogle Scholar
Maddess, T. & Severt, W. (1999). Testing for glaucoma with the frequency-doubling illusion in the whole, macular and eccentric visual fields. Australian and New Zealand Journal of Ophthalmology 27, 194196.CrossRefGoogle Scholar
McClurkin, J.W., Optican, L.M., & Richmond, B.J. (1994). Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Visual Neuroscience 11, 601617.CrossRefGoogle Scholar
Przybyszewski, A.W., Gaska, J.P., Foote, W., & Pollen, D.A. (2000). Striate cortex increases contrast gain of macaque LGN neurons. Visual Neuroscience 17, 485494.CrossRefGoogle Scholar
Repucci, M.A., Schiff, N.D., & Victor, J.D. (2001). General strategy for hierarchical decomposition of multivariate time series: Implications for temporal lobe seizures. Journal of Vision 29, 11351149.Google Scholar
Ruseckaite, R., Maddess, T., & James, A. (2004). Sparse multifocal stimuli for the detection of multiple sclerosis. Annals of Neurology (submitted).Google Scholar
Sclar, G., Lennie, P., & DePriest, D.D. (1989). Contrast adaptation in striate cortex of macaque. Vision Research 29, 747755.CrossRefGoogle Scholar
Sclar, G., Maunsell, J.H.R., & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 110.Google Scholar
Snippe, H.P., Poot, L., & van Hateren, J.H. (2004). Asymmetric dynamics of adaptation after onset and offset of flicker. Journal of Vision 4, 112.Google Scholar
Solomon, S.G., White, A.J., & Martin, P.R. (2002). Extraclassical receptive field properties of parvocellular, magnocellular, and koniocellular cells in the primate lateral geniculate nucleus. Journal of Neuroscience 22, 338349.Google Scholar
Victor, J.D. & Shapley, R.M. (1979a). The nonlinear pathway of Y ganglion cells in the cat retina. Journal of General Physiology 74, 671689.Google Scholar
Victor, J.D. & Shapley, R.M. (1979b). Receptive field mechanism of cat X and Y retinal ganglion cells. Journal of General Physiology 74, 275298.Google Scholar
Victor, J.D., Shapley, R.M., & Knight, B.W. (1977). Nonlinear analysis of cat retinal ganglion cells in the frequency domain. Proceedings of the National Academy of Sciences of the U.S.A. 74, 30683072.CrossRefGoogle Scholar
Zenger-Landolt, B. & Heeger, D.J. (2003). Response suppression in v1 agrees with psychophysics of surround masking. Journal of Neuroscience 23, 68846893.Google Scholar