Article contents
Complex motion selectivity in PMLS cortex following early lesions of primary visual cortex in the cat
Published online by Cambridge University Press: 12 April 2007
Abstract
In the cat, the analysis of visual motion cues has generally been attributed to the posteromedial lateral suprasylvian cortex (PMLS) (Toyama et al., 1985; Rauschecker et al., 1987; Rauschecker, 1988; Kim et al., 1997). The responses of neurons in this area are not critically dependent on inputs from the primary visual cortex (VC), as lesions of VC leave neuronal response properties in PMLS relatively unchanged (Spear & Baumann, 1979; Spear, 1988; Guido et al., 1990b). However, previous studies have used a limited range of visual stimuli. In this study, we assessed whether neurons in PMLS cortex remained direction-selective to complex motion stimuli following a lesion of VC, particularly to complex random dot kinematograms (RDKs). Unilateral aspiration of VC was performed on post-natal days 7–9. Single unit extracellular recordings were performed one year later in the ipsilateral PMLS cortex. As in previous studies, a reduction in the percentage of direction selective neurons was observed with drifting sinewave gratings. We report a previously unobserved phenomenon with sinewave gratings, in which there is a greater modulation of firing rate at the temporal frequency of the stimulus in animals with a lesion of VC, suggesting an increased segregation of ON and OFF sub-regions. A significant portion of neurons in PMLS cortex were direction selective to simple (16/18) and complex (11/16) RDKs. However, the strength of direction selectivity to both stimuli was reduced as compared to normals. The data suggest that complex motion processing is still present, albeit reduced, in PMLS cortex despite the removal of VC input. The complex RDK motion selectivity is consistent with both geniculo-cortical and extra-geniculate thalamo-cortical pathways in residual direction encoding.
Keywords
- Type
- Research Article
- Information
- Copyright
- © 2007 Cambridge University Press
References
REFERENCES
- 3
- Cited by