Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T03:22:38.121Z Has data issue: false hasContentIssue false

Complete flatmounting of the macaque cerebral cortex

Published online by Cambridge University Press:  30 March 2004

LAWRENCE C. SINCICH
Affiliation:
Beckman Vision Center, University of California—San Francisco, San Francisco
DANIEL L. ADAMS
Affiliation:
Beckman Vision Center, University of California—San Francisco, San Francisco
JONATHAN C. HORTON
Affiliation:
Beckman Vision Center, University of California—San Francisco, San Francisco

Abstract

The elaborate folding of the brain surface has posed a practical impediment to investigators engaged in mapping the areas of the cerebral cortex. This obstacle has been overcome partially by the development of methods to erase the sulci and gyri by physically flattening the cortex prior to sectioning. In this study, we have prepared a step-by-step atlas of the flatmounting process for the entire cerebral cortex in the macaque monkey. The cortex was dissected from the white matter, unfolded, and flattened in a single piece of tissue by making three relieving cuts. The flatmount was sectioned at 60–75 μm and processed for cytochrome oxidase (CO) or myelin. From animal to animal there was nearly a twofold variation in the surface area of individual cortical regions, and of the whole cortex. In each specimen, a close correlation was found between V1 surface area (mean = 1343 mm2), V2 surface area (mean = 1012 mm2), hippocampal area (mean = 181 mm2), and total cerebral cortex area (mean = 10,430 mm2). The complete pattern of CO stripes in area V2 was labeled clearly in several cases; the number of cycles of thick-pale-thin-pale stripes ranged from 26 to 34. Characteristic patterns of strong CO activity were encountered in areas V3, MT, auditory and somatosensory cortex. In some animals we made injections of a retrograde tracer, gold-conjugated cholera toxin B subunit, into area V2 to identify all sources of cortical input. In addition to previously described inputs, we identified three new regions in the occipitotemporal region that project to V2. Flatmounting the cerebral cortex is a simple, efficient method that can be used routinely for mapping areas and connections in the macaque brain, the most widely used primate model of the human brain.

Type
Research Article
Copyright
© 2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, D.L. & Horton, J.C. (2003). Capricious expression of cortical columns in the primate brain. Nature Neuroscience 6, 113114.Google Scholar
Allman, J.M. & Kaas, J.H. (1971). A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Research 31, 85105.Google Scholar
Allman, J.M. & Kaas, J.H. (1974). The organization of the second visual area (V II) in the owl monkey: A second order transformation of the visual hemifield. Brain Research 76, 247265.Google Scholar
Allman, J.M. & Kaas, J.H. (1975). The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Research 100, 473487.Google Scholar
Anderson, J.C. & Martin, K.A.C. (2002). Connection from cortical area V2 to MT in macaque monkey. Journal of Comparative Neurology 443, 5670.Google Scholar
Andrews, T.J., Halpern, S.D., & Purves, D. (1997). Correlated size variations in human visual cortex, lateral geniculate nucleus, and optic tract. Journal of Neuroscience 17, 28592868.Google Scholar
Beck, P.D. & Kaas, J.H. (1998). Cortical connections of the dorsomedial visual area in new world owl monkeys (Aotus trivirgatus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Neurology 400, 1834.Google Scholar
Beck, P.D. & Kaas, J.H. (1999). Cortical connections of the dorsomedial visual area in old world macaque monkeys. Journal of Comparative Neurology 406, 487502.Google Scholar
Boyd, J.D. & Casagrande, V.A. (1999). Relationships between cytochrome oxidase (CO) blobs in primate primary visual cortex (V1) and the distribution of neurons projecting to the middle temporal area (MT). Journal of Comparative Neurology 409, 573591.Google Scholar
Brewer, A.A., Press, W.A., Logothetis, N.K., & Wandell, B.A. (2002). Visual areas in macaque cortex measured using functional magnetic resonance imaging. Journal of Neuroscience 22, 1041610426.Google Scholar
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: J. A. Barth.
Brodmann, K. (1918). Individuelle Variationen der Sehsphäre und ihr Bedeutung für die Klinik der Hinterhauptschüsse. Allgz Psychiat (Berlin) 74, 564568.Google Scholar
Clarke, S. & Rivier, F. (1998). Compartments within human primary auditory cortex: Evidence from cytochrome oxidase and acetylcholinesterase staining. European Journal of Neuroscience 10, 741745.Google Scholar
Collins, C.E., Stepniewska, I., & Kaas, J.H. (2001). Topographic patterns of V2 cortical connections in a prosimian primate (Galago garnetti). Journal of Comparative Neurology 431, 155167.Google Scholar
Dale, A.M., Fischl, B., & Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179194.Google Scholar
Desimone, R. & Ungerleider, L.G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. Journal of Comparative Neurology 248, 164189.Google Scholar
De Vries, I. (1912). Über die Zytoarchitektonik der Grosshirnrinde der Maus und über die Beziehungen der einzelnen Zellschichten zum Corpus Callosum auf Grund von experimentellen Läsionen. Folia neuro-biol 6, 288322.Google Scholar
DeYoe, E.A. & Van Essen, D.C. (1985). Segregation of efferent connections and receptive field properties in visual area V2 of the macaque. Nature 317, 5861.Google Scholar
Droogleever Fortuyn, A.B. (1914). Cortical cell-lamination of the hemispheres of some rodents. Archives of Neurology and Psychiatry (Mott's) 6, 221354.Google Scholar
Drury, H.A., Van Essen, D.C., Anderson, C.H., Lee, C.W., Coogan, T.A., & Lewis, J.W. (1996). Computerized mappings of the cerebral cortex: A multiresolution flattening method and a surface-based coordinate system. Journal of Cognitive Neuroscience 8, 128.Google Scholar
Eskenasy, A.C. & Clarke, S. (2000). Hierarchy within human SI: Supporting data from cytochrome oxidase, acetylcholinesterase and NADPH-diaphorase staining patterns. Somatosensory and Motor Research 17, 123132.Google Scholar
Felleman, D.J. & Van Essen, D.C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1, 147.Google Scholar
Felleman, D.J., Xiao, Y., & McClendon, E. (1997). Modular organization of occipito-temporal pathways: Cortical connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque monkeys. Journal of Neuroscience 17, 31853200.Google Scholar
Fischl, B., Sereno, M.I., & Dale, A.M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195207.Google Scholar
Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurological Research 1, 203209.Google Scholar
Gattass, R. & Gross, C.G. (1981). Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 621638.Google Scholar
Gattass, R., Sousa, A.P., Mishkin, M., & Ungerleider, L.G. (1997). Cortical projections of area V2 in the macaque. Cerebral Cortex 7, 110129.Google Scholar
Horton, J.C. (1984). Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 199253.Google Scholar
Horton, J.C. & Hocking, D.R. (1996). Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. Journal of Neuroscience 16, 72287239.Google Scholar
Horton, J.C. & Hocking, D.R. (1997). Myelin patterns in V1 and V2 of normal and monocularly enucleated monkeys. Cerebral Cortex 7, 166177.Google Scholar
Horton, J.C. & Hubel, D.H. (1981). Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292, 762764.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1969). Anatomical demonstration of columns in the monkey striate cortex. Nature 221, 747750.Google Scholar
Jones, E.G., Dell'Anna, M.E., Molinari, M., Rausell, E., & Hashikawa, T. (1995). Subdivisions of macaque monkey auditory cortex revealed by calcium-binding protein immunoreactivity. Journal of Comparative Neurology 362, 153170.Google Scholar
Jones, E.G., Woods, T.M., & Manger, P.R. (2002). Adaptive responses of monkey somatosensory cortex to peripheral and central deafferentation. Neuroscience 111, 775797.Google Scholar
Kennedy, H. & Bullier, J. (1985). A double-labeling investigation of the afferent connectivity to cortical areas V1 and V2 of the macaque monkey. Journal of Neuroscience 5, 28152830.Google Scholar
Krubitzer, L.A. & Kaas, J.H. (1990). Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns. Visual Neuroscience 5, 165204.Google Scholar
Krubitzer, L.A. & Kaas, J.H. (1993). The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates. Journal of Comparative Neurology 334, 497528.Google Scholar
LeVay, S., Connolly, M., Houde, J., & Van Essen, D.C. (1985). The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. Journal of Neuroscience 5, 486501.Google Scholar
Lewis, J.W. & Van Essen, D.C. (2000). Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto-occipital cortex. Journal of Comparative Neurology 428, 79111.Google Scholar
Livingstone, M.S. & Hubel, D.H. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4, 309356.Google Scholar
Llewellyn-Smith, I.J., Minson, J.B., Wright, A.P., & Hodgson, A.J. (1990). Cholera toxin B-gold, a retrograde tracer that can be used in light and electron microscopic immunocytochemical studies. Journal of Comparative Neurology 294, 179191.Google Scholar
Lorente De Nó, R. (1922). La corteza cerebral del ratón. Trabajos del Laboratorio de Investigaciones Biológicas de la Universidad de Madrid 20, 4178.Google Scholar
Lyon, D.C. & Kaas, J.H. (2001). Connectional and architectonic evidence for dorsal and ventral V3, and dorsomedial area in marmoset monkeys. Journal of Neuroscience 21, 249261.Google Scholar
Lyon, D.C. & Kaas, J.H. (2002). Evidence for a modified v3 with dorsal and ventral halves in macaque monkeys. Neuron 33, 453461.Google Scholar
Maunsell, J.H.R. & Van Essen, D.C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535555.Google Scholar
Mouritzen Dam, A. (1979). Shrinkage of the brain during histological procedures with fixation in formaldehyde solutions of different concentrations. Journal of Hirnforsch 20, 115119.Google Scholar
Olavarria, J.F. & Van Sluyters, R.C. (1985). Unfolding and flattening the cortex of gyrencephalic brains. Journal of Neuroscience Methods 15, 191202.Google Scholar
Olavarria, J.F. & Van Essen, D.C. (1997). The global pattern of cytochrome oxidase stripes in visual area V2 of the macaque monkey. Cerebral Cortex 7, 395404.Google Scholar
Penfield, W. & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60, 389443.Google Scholar
Piccolomini, A. (1586). Anatomicae praelectiones explicantes mirificam corporis humani fabricam (Rome). Translated in E. Clarke and C.D. O'Malley, The Human Brain and Spinal Cord, San Francisco: Norman Publishing, pp. 387–388.
Preuss, T.M., Beck, P.D., & Kaas, J.H. (1993). Areal, modular, and connectional organization of visual cortex in a prosimian primate, the slow loris (Nycticebus coucang). Brain, Behavior and Evolution 42, 321335.Google Scholar
Rockland, K.S. & Pandya, D.N. (1979). Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research 179, 320.Google Scholar
Rockland, K.S. & Van Hoesen, G.W. (1994). Direct temporal-occipital feedback connections to striate cortex (V1) in the macaque monkey. Cerebral Cortex 4, 300313.Google Scholar
Roe, A.W. & Ts'o, D.Y. (1999). Specificity of color connectivity between primate V1 and V2. Journal of Neurophysiology 82, 27192730.Google Scholar
Rose, M. (1912). Histologische Lokalisation der Grosshirnrinde bei kleinen Säugetieren (Rodentia, Insectivora, Chiroptera). Journal für Psychologie und Neurologie (Leipzig) 19, 389479.Google Scholar
Rovamo, J. & Virsu, V. (1984). Isotropy of cortical magnification and topography of striate cortex. Vision Research 24, 283286.Google Scholar
Sereno, M.I., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R., & Tootell, R.B. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889893.Google Scholar
Sherk, H. (1992). Flattening the cerebral cortex by computer. Journal of Neuroscience Methods 41, 255267.Google Scholar
Sincich, L.C. & Horton, J.C. (2002a). Divided by cytochrome oxidase: A map of the projections from V1 to V2 in macaques. Science 295, 17341737.Google Scholar
Sincich, L.C. & Horton, J.C. (2002b). Pale cytochrome oxidase stripes in V2 receive the richest projection from macaque striate cortex. Journal of Comparative Neurology 447, 1833.Google Scholar
Stensaas, S.S., Eddington, D.K., & Dobelle, W.H. (1974). The topography and variability of the primary visual cortex in man. Journal of Neurosurgery 40, 747755.Google Scholar
Stepniewska, I. & Kaas, J.H. (1996). Topographic patterns of V2 cortical connections in macaque monkeys. Journal of Comparative Neurology 371, 129152.Google Scholar
Tootell, R.B. & Silverman, M.S. (1985). Two methods for flat-mounting cortical tissue. Journal of Neuroscience Methods 15, 177190.Google Scholar
Tootell, R.B., Silverman, M.S., Switkes, E., & De Valois, R.L. (1982). Deoxyglucose analysis of retinotopic organization in primate striate cortex. Science 218, 902904.Google Scholar
Tootell, R.B., Hamilton, S.L., & Silverman, M.S. (1985). Topography of cytochrome oxidase activity in owl monkey cortex. Journal of Neuroscience 5, 27862800.Google Scholar
Tootell, R.B.H. & Taylor, J.B. (1995). Anatomical evidence for MT and additional cortical visual areas in humans. Cerebral Cortex 1, 3955.Google Scholar
Tootell, R.B.H., Silverman, M.S., De Valois, R.L., & Jacobs, G.H. (1983). Functional organization of the second cortical visual area in primates. Science 220, 737739.Google Scholar
Van Essen, D.C. (2003). Organization of visual areas in macaque and human cerebral cortex. In Visual Neurosciences, ed. Werner, J.S. & Chalupa, L.M., pp. 507522. Cambridge, Massachusetts: MIT Press.
Van Essen, D.C. & Zeki, S.M. (1978). The topographic organization of rhesus monkey prestriate cortex. Journal of Physiology 277, 193226.Google Scholar
Van Essen, D.C. & Maunsell, J.H.R. (1980). Two-dimensional maps of the cerebral cortex. Journal of Comparative Neurology 191, 255281.Google Scholar
Van Essen, D.C., Maunsell, J.H.R., & Bixby, J.L. (1981). The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties and topographic organization. Journal of Comparative Neurology 199, 293326.Google Scholar
Van Essen, D.C., Newsome, W.T., & Maunsell, J.H. (1984). The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research 24, 429448.Google Scholar
Van Essen, D.C., Lewis, J.W., Drury, H.A., Hadjikhani, N., Tootell, R.B., Bakircioglu, M., & Miller, M.I. (2001). Mapping visual cortex in monkeys and humans using surface-based atlases. Vision Research 41, 13591378.Google Scholar
Welker, C. & Woolsey, T.A. (1974). Structure of layer IV in the somatosensory neocortex of the rat: Description and comparison with the mouse. Journal of Comparative Neurology 158, 437453.Google Scholar
Wong-Riley, M. & Carroll, E.W. (1984). Effect of impulse blockage on cytochrome oxidase activity in monkey visual system. Nature 307, 262264.Google Scholar
Woolsey, T.A. & Van Der Loos, H. (1970). The structural organization of layer IV in the somatosensory region (S1) of mouse cerebral cortex: The description of a cortical field composed of cytoarchitectonic units. Brain Research 17, 205242.Google Scholar
Zeki, S.M. (1978). The third visual complex of rhesus monkey prestriate cortex. Journal of Physiology 277, 245272.Google Scholar