Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T20:36:57.508Z Has data issue: false hasContentIssue false

A comparison of the components of the multifocal and full-field ERGs

Published online by Cambridge University Press:  02 June 2009

Donald C. Hood
Affiliation:
Department of Psychology, Columbia University, New York
William Seiple
Affiliation:
Department of Ophthalmology, NYU Medical Center, New York
Karen Holopigian
Affiliation:
Department of Ophthalmology, NYU Medical Center, New York
Vivienne Greenstein
Affiliation:
Department of Ophthalmology, NYU Medical Center, New York

Abstract

The multi-input technique of Sutter and Tran (1992) yields multiple focal ERGs. The purpose here was to compare the components of this multifocal ERG to the components of the standard, full-field ERG. To record multifocal ERGs, an array of 103 hexagons was displayed on a monitor. Full-field (Ganzfeld) ERGs were elicited by flashes presented upon steady background fields. The latencies of two prominent subcomponents of the full-field ERG were altered by varying the intensity of the incremental flash or the intensity of the background field. By showing that similar manipulations of the multi-input parameters produce similar changes in latency, we were able to relate the components of the multifocal ERG to the components of the full-field ERG. The biphasic responses of the multifocal ERG appear to be generated by the same cells generating the a-wave and positive peaks of the full-field cone ERG.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aiba, T.X., Alpern, M. & Maaseidvaag, F. (1967). The electroretinogram evoked by excitation of human foveal cones. Journal of Physiology 189, 4362.CrossRefGoogle ScholarPubMed
Alexander, K., Fishman, G., Peachey, N., Marchese, A. & Tso, M. (1992). ‘On’ response defect in paraneoplastic night blindness with cutaneous malignant melanoma. Investigative Ophthalmology and Visual Science 33, 477483.Google ScholarPubMed
Bush, R.A. & Sieving, P. (1994). A proximal retinal component in the primate photopic ERG a-wave. Investigative Ophthalmology and Visual Science 35, 635644.Google ScholarPubMed
Curcio, C.A., Sloan, K.R., Kalina, R.E. & Hendrickson, A.E. (1990). Human photoreceptor topography. Journal of Comparative Neurology 292, 497523.CrossRefGoogle ScholarPubMed
Gouras, P. & MacKay, C.J. (1989). Light adaptation of the electroretinogram. Investigative Ophthalmology and Visual Science 30, 619624.Google ScholarPubMed
Hawlina, M. & Konec, B. (1992). New noncorneal HK*-loop electrode for clinical electroretinography. Documenta Ophthalmologica 81, 253259.CrossRefGoogle ScholarPubMed
Hayhoe, M., Benimoff, N.I. & Hood, D.C. (1987). The time-course of multiplicative and subtractive adaptation processes. Vision Research 27, 19811996.CrossRefGoogle Scholar
Holopigian, K., Seiple, W., Lorenzo, M. & Carr, R. (1992). A comparison of photopic and scotopic electroretinographic changes in early diabetic retinopathy. Investigative Ophthalmology and Visual Science 33, 27732780.Google Scholar
Hood, D.C. & Birch, D.G. (1996). Abnormalities of the retinal cone system in retinitis pigmentosa. Vision Research 36, 16991709.CrossRefGoogle ScholarPubMed
Hood, D.C., Cideciyan, A.V., Halevy, D.A. & Jacobson, S.G. (1996). Sites of disease action in a retinopathy with supernormal and delayed rod electroretinogram b-waves. Vision Research 36, 889902.CrossRefGoogle Scholar
Jones, R., King-Smith, P.E., Loffing, D.H. & Gaynier, F.L. (1986). Stray light contributions to the focal electroretinogram (ERG). Clinical Visual Science 1, 153160.Google Scholar
Keating, D., Parks, S., Williamson, T.H., Evans, A.L., Jay, J.L. & Elliott, A.T. (1996). The effect of pupil dilation, retinal blur and filter bandwidth on the multi-focal ERG. Investigative Ophthalmology and Visual Science (Suppl.) 37, S346.Google Scholar
Kergoat, H. & Lovasik, J.V. (1990). The effects of altered retinal vascular perfusion pressure on the white flash scotopic ERG and oscillatory potentials in man. Electroencephalography and Clinical Neurophysiology 75, 306322.CrossRefGoogle ScholarPubMed
Kojima, M. & Zrenner, E. (1978). Off-components in response to brief light flashes in the oscillatory potential of the human electroretinogram. Albrecht v. Graefes Archiv fur Klinische und Experimentelle Ophthalmologie 206, 107120.CrossRefGoogle ScholarPubMed
Kondo, M., Miyake, Y., Horiguchi, M., Suzuki, S. & Tanikawa, A. (1995). Clinical evaluation of multifocal electroretinogram. Investigative Ophthalmology and Visual Science 36, 21462150.Google ScholarPubMed
Kondo, M., Horiguchi, M., Miyake, Y., Suzuki, S. & Tanikawa, A. (1996). Effects of rapid random flash stimuli on electroretinographic responses. Folia Ophthalmologia Japan 47, 531535.Google Scholar
Lachapelle, P., Little, J.M. & Polomeno, R.C. (1983). The photopic electroretinogram in congenital stationary night blindness with myopia. Investigative Ophthalmology and Visual Science 24, 442450.Google Scholar
Martin, P.R. & Grunert, U. (1992). Spatial density and immunoreactivity of bipolar cells in the macaque monkey retina. Journal of Comparative Neurology 323, 269287.CrossRefGoogle ScholarPubMed
Miyake, Y. (1990). Macular oscillatory potentials in humans. Documenta Ophthalmologica 75, 111124.CrossRefGoogle ScholarPubMed
Miyake, Y., Shiroyama, N., Horiguchi, M. & Ota, I. (1989). Asymmetry of focal ERG in human macular region. Investigative Ophthalmology and Visual Science 30, 17431749.Google Scholar
Miyake, Y., Shiroyama, N., Ota, I. & Horiguchi, M. (1988). Oscillatory potentials in electroretinograms of the human macular region. Investigative Ophthalmology and Visual Science 29, 16311635.Google ScholarPubMed
Murayama, K. & Sieving, P. (1992). Different rates of growth of monkey and human photopic a-, b-, and d-waves suggest two sites of ERG light adaptation. Clinical Vision Science 7, 385392.Google Scholar
Nagata, M. (1963). Studies of the photopic ERG of the human retina. Japanese Journal of Ophthalmology 7, 96124.Google Scholar
Peachey, N.S., Alexander, K.R., Derlacki, D.J., Bobak, P. & Fishman, G.A. (1991). Effects of light adaptation on the response characteristics of human oscillatory potentials. Electroencephalography and Clinical Neurophysiology 78, 2734.Google Scholar
Sandberg, M.A. & Ariel, M. (1977). A hand-held two channel stimulator ophthalmoscope. Archives of Ophthalmology 95, 18811882.CrossRefGoogle ScholarPubMed
Seiple, W. & Holopigian, K. (1994). The “OFF’ response of the human electroretinogram does not contribute to the brief flash ‘b-wave.’ Visual Neuroscience 11, 667673.Google Scholar
Sieving, P.A. (1993). Photopic on- and off-pathway abnormalities in retinal dystrophies. Transactions of the American Ophthalmological Society 91, 701773.Google ScholarPubMed
Sutter, E.E. (1991). The fast m-transform: A fast computation of cross-correlations with binary m-sequences. Society for Industrial and Applied Mathematics 20, 686694.Google Scholar
Sutter, E.E. & Tran, D. (1992). The field topography of ERG components in man—I. The photopic luminance response. Vision Research 32, 433446.CrossRefGoogle ScholarPubMed
Usui, S. & Nagasaka, E. (1994). Spatial distribution of local flash electroretinogram by multi-input stimulation. Documenta Ophthalmologica 88, 5763.CrossRefGoogle ScholarPubMed
Walters, J.W., Smith, E.L. & Manny, R.E. (1981). ERG off-effects produced by short duration stimuli. American Journal of Optometry 58, 792796.CrossRefGoogle ScholarPubMed
Wu, S. & Sutter, E.E. (1995). A topographic study of oscillatory potentials in man. Visual Neuroscience 12, 10131025.CrossRefGoogle ScholarPubMed
Young, R. (1991). Low-frequency component of the photopic ERG in patients with X-linked Congenital Stationary Night Blindness. Clinical Vision Science 6, 309315.Google Scholar