Published online by Cambridge University Press: 05 April 2005
We have studied the influence of chromatic adaptation upon the perceived visual position of a test stimulus using a Vernier alignment task. Maximum and minimum offsets in spatial position are generated when the adapting and test stimuli lie on the same and orthogonal axes in MBDKL color space, respectively. When the test stimuli lie on intermediate color axes, the measured positional shifts decrease as a function of the angular separation in color space (φ) from the adapting stimulus. At low stimulus contrasts, these shifts follow a sinusoidal function of φ and exhibit broad chromatic tuning and can be accounted for by a model in which the centroid is extracted from the linear combination of after-image, formed by the adapting stimulus, and the test stimulus. Such linear, broadband behavior is consistent with the response properties of chromatic neurons in the precortical visual pathway. At high contrast, and when adaptation gets closer to the S/(L+M) axis, the tuning functions become narrower and require sinusoids raised to increasingly higher exponents in order to describe the data. This narrowing of chromatic tuning is consistent with the tuning properties of chromatic neurons in the striate cortex, and implies the operation of a nonlinear mechanism in the combination of cone outputs.