Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-17T15:16:19.837Z Has data issue: false hasContentIssue false

Centrifugal pathways to the retina: Influence of the optic tectum

Published online by Cambridge University Press:  02 June 2009

Hiroyuki Uchiyama
Affiliation:
Institute for Sensory Research, Syracuse University, Syracuse

Abstract

Two types of centrifugal pathways to the retina have been found in the vertebrates, according to the location of the cell bodies and presence or absence of connections with the optic tectum. One type is represented by the isthmo-optic nucleus (ION) of birds and, therefore, termed “ION-type” retinopetal system. The other type is termed “non-ION-type” retinopetal system. The ION-type retinopetal systems have been found in the cyclostomes, teleosts, reptiles, and birds. This review describes the anatomy and physiology of the ION-type retinopetal systems, mainly of birds and teleosts. On the basis of anatomical and physiological evidence cited in this review, the ION-type retinopetal systems can be regarded as the tectofugal pathways to the retina. The function of the ION-type retinopetal systems is discussed in detail, with special emphasis on their relation to the role of the tectum in mediating visuomotor behavior.

Type
Review
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akert, K. (1949). Der visuelle greifreflex. Helvetica physiologica pharmacologica Acta 7, 112134.Google Scholar
Al-Akel, A.S., Guthrie, D.M. & Banks, J.R. (1986). Motor responses to localized electrical stimulation of the tectum in the freshwater perch (Perca fluviatilis). Neuroscience 19, 13811391.Google Scholar
Angaut, P. & Repérant, J. (1978). A light- and electron-microscopic study of the nucleus isthmo-opticus in the pigeon. Archives d Anatomie microscopique et de Morphologie experimental 67, 6378.Google Scholar
Barlow, R.B. Jr., Kaplan, E., Renninger, G.H. & Saito, T. (1985). Efferent control of circadian rhythums in the Limulus lateral eye. Neuroscience Research (Suppl.) 2, 565578.Google Scholar
Bastian, J. (1982). Vision and electroception: integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. Journal of Comparative Physiology 147, 287297.Google Scholar
Benowitz, L.I. & Karten, H.J. (1976). Organization of the tectofugal visual pathway in the pigeon: a retrograde transport study. Journal of Comparative Neurology 167, 503520.Google Scholar
Berson, D.M. & Hartline, P.H. (1988). A tecto-rotundo-telencephalic pathway in the rattlesnake: evidence for a forebrain representation of the infrared sense. Journal of Neuroscience 8, 10741088.Google Scholar
Berson, D.M. & McIlwan, J.T. (1983). Visual cortical inputs to deep layers of cat's superior colliculus. Journal of Neurophysiology 50, 11431155.Google Scholar
Bölke, J.E. & Chalpin, C.G. (1968). Fishes of the Bahamas and Adjacent Tropic Waters. Wynnewood, Pennsylvania: Livingstone Publishing.Google Scholar
Branston, N.M. & Fleming, D.G. (1968). Efferent fibers in the frog optic nerve. Experimental Neurology 20, 611623.CrossRefGoogle ScholarPubMed
Bravo, H. & Pettigrew, J.D. (1981). The distribution of neurons projecting from the retina and visual cortex to the thalamus and tectum opticum of the barn owl (Tyto alba) and the burrowing owl (Speotyto cunicularia). Journal of Comparative Neurology 199, 419441.Google Scholar
Brindley, G.S. (1970). Physilogy of the Retina and Visual Pathway (2nd ed.), pp. 105110, Baltimore: Williams & Wilkins.Google Scholar
Brindley, G.S. & Hamasaki, D.I. (1966). Histological evidence against the view that the cat's optic nerve contains centrifugal fibers. Journal of Physiology (London) 184, 444449.Google Scholar
Burkhalter, A., Wang, S.J. & Streit, P. (1979). Thalamic projection of retinal ganglion cells: distribution and classification. Neuroscience Letters (Suppl.) 3, S285.Google Scholar
Caine, H. & Gruberg, E.R. (1985). Ablation of nucleus isthmi leads to loss of specific visually elicited behaviors in the frog (Rana pipiens). Neuroscience Letters 54, 307312.Google Scholar
Cervetto, L., Marchiafava, P.L. & Pasina, E. (1976). Influence of efferent retinal fibres on responsiveness of ganglion cells to light. Nature 260, 5657.CrossRefGoogle ScholarPubMed
Clark, E. (1950). Notes on the behavior and morphology of some West Indian plectognath fishes. Zoologica 35, 159168.Google Scholar
Cohen, D.H. & Pitts, L.H. (1967). The hyperstriatal region of the avian forebrain: somatic and autonomic responses to electrical stimulation. Journal of Comparative Neurology 131, 323336.Google Scholar
Collin, S.P. & Pettigrew, J.D. (1988). Retinal topography in reef teleosts, II: Some species with prominent horizontal streaks and high-density area e. Brain, Behavior and Evolution 31, 283295.CrossRefGoogle Scholar
Cowan, W.M. (1970). Centrifugal fibers to the avian retina. British Medical Bulletin 26, 112118.Google Scholar
Cowan, W.M. & Clarke, P.G.H. (1976). The development of the isthmo-optic nucleus. Brain, Behavior and Evolution 13, 345375.Google Scholar
Cowan, W.M. & Powell, T.P.S. (1963). Centrifugal fibres in the avian visual system. Proceedings of the Royal Society B 158, 232252.Google ScholarPubMed
Cowan, W.M., Adamson, L. & Powell, T.P.S. (1961). An experimental study of the avian visual system. Journal of Anatomy 95, 545563.Google ScholarPubMed
Crapon de Caprona, M-D. & Fritzsch, B. (1983). The development of the retinopetal nucleus olfacto-retinalis of two cichlid fish as revealed by horseradish peroxidase. Developmental Brain Research 11, 281301.CrossRefGoogle Scholar
Crick, F. (1984). Function of the thalamic reticular complex: the searchlight hypothesis. Proceedings of the National Academy of Sciences of the U.S.A. 81, 45864590.CrossRefGoogle ScholarPubMed
Crossland, W. J. (1979). Identification of tectal synaptic terminals in the avian isthmo-optic nucleus. In Neural Mechanisms and Behavior in the Pigeon, ed. Granda, A.M. & Maxwell, J.H. pp. 267285. New York: Plenum Press.Google Scholar
Crossland, W.J. & Hughes, C.P. (1978). Observations on the afferent and efferent connections of the avian isthmo-optic nucleus. Brain Research 145, 239256.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Ulinski, P.S. (1983). Nucleus rotundus in a snake (Thamnophis sirtalis): An analysis of a nonretinotopic projection. Journal of Comparative Neurology 216, 175191.Google Scholar
Davis, R.E., Kyle, A.L. & Klinger, P.D. (1988). Nervus terminalis in-nervation of the goldfish retina and behavioral visual sensitivity. Neuroscience Letters 91, 126130.CrossRefGoogle Scholar
Lanerolle, N.C.de, Elde, R.P., Sparber, S.B. & Frick, M. (1981). Distribution of methionine-enkephalin immunoreactivity in the chick brain. An immunohistochemical study. Journal of Comparative Neurology 199, 513533.Google Scholar
Demski, L.S. & Northcutt, R.G. (1983). The terminal nerve: a new chemosensory system in vertebrates? Science 220, 435437.Google Scholar
Dowling, J.E. & Cowan, W.M. (1966). An electron-microscope study of normal and degenerating centrifugal fiber terminals in the pigeon retina. Zeitschrift für Zellforschung und Mikroskopische Anatomie 71, 1428.Google Scholar
Dräger, U.C., Edwards, D.L. & Barnstable, C.J. (1984). Antibodies against filamentous components in discrete cell types of the mouse retina. Journal of Neuroscience 4, 20252042.Google Scholar
Lac, S.du & Knudsen, E.I. (1986). A map of head movements in barn owls is revealed by electrical stimulation of the optic tectum. Society for Neuroscience Abstracts 12, 1185.Google Scholar
Lac, S.du & Knudsen, E.I. (1987). The optic tectum encodes saccade magnitude in a push-pull fashion in the barn owl. Society for Neuroscience Abstracts 13, 393.Google Scholar
Eason, R.G., Oakley, M. & Flowers, L. (1983). Central neural influences on the human retina during selective attention. Physiological Psychology 11, 1828.Google Scholar
Easter, S.S. Jr., (1975). Horizontal eye movements in fish. In Vision in Fishes. New Approaches in Research, ed. An, M.A., pp. 397407. New York: Plenum Press.CrossRefGoogle Scholar
Ebbesson, S.O.E. & Meyer, D.L. (1981). Efferents to the retina have multiple sources in teleost fish. Science 214, 924926.CrossRefGoogle Scholar
Ekström, P. (1984). Central neural connections of the pineal organ and retina in the teleost Casterosteus aculeatus L. Journal of Comparative Neurology 226, 321335.CrossRefGoogle Scholar
Ferguson, J.L., Mulvanny, P.J. & Brauth, S.E. (1978). Distribution of neurons projecting to the retina of Caiman crocodilus. Brain, Behavior and Evolution 15, 294306.Google Scholar
Fiebig, E., Meyer, D.L. & Ebbesson, S.O.E. (1985). Eye movements evoked from telencephalic stimulation in the piranha (Serrasalmus nattereri). Comparative Biochemistry and Physiology 81A, 6770.Google Scholar
Fite, K.V., Brecha, N., Karten, H.J. & Hunt, S.P. (1981). Displaced ganglion cells and the accessory optic system of pigeon. Journal of Comparative Neurology 195, 279288.CrossRefGoogle ScholarPubMed
Fritzsch, B. & Himstedt, W. (1981). Pretectal neurons project to the salamander retina. Neuroscience Letters 24, 1317.Google Scholar
Fritzsch, B., Wilm, C. & Crapon de Caprona, M.D. (1987). Ipsilateral retinofugal and retinopetal projections in normal and monocular cichlid fish. Neuroscience Letters 78, 259264.CrossRefGoogle ScholarPubMed
Frost, B.J., Scilley, P.L. & Wong, C.P. (1981). Moving background patterns reveal double opponency of directionally specific pigeon tectal neurons. Experimental Brain Research 43, 173185.CrossRefGoogle ScholarPubMed
Frumkes, T.E., Miller, R.F., Slaughter, M. & Dacheux, R.F. (1981). Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina, III: Amacrine-mediate inhibitory influences on ganglion cell receptive-field organization: a model. Journal of Neurophysiology 45, 783804.Google Scholar
Fujita, I., Sorensen, P.W., Stacey, N.E. & Hara, T.J. (1989). Chemosensory responses to sex pheromones are carried by the olfactory system not the terminal nerve (under review for publication).Google Scholar
Galifret, Y., Condé-Courtine, F., Repérant, J. & Serviére, J. (1971). Centrifugal control in the visual system of the pigeon. Vision Research (Suppl.) 3, 185200.Google Scholar
Gamlin, P.D.R. & Cohen, D.H. (1988). Projections of the retinorecipient pretectal nuclei in the pigeon (Columba livia). Journal of Comparative Neurology 269, 1846.Google Scholar
Gerwerzhagen, K., Rickmann, M.J., Meyer, D.L. & Ebbesson, S.O.E. (1982). Optic tract cells projecting to the retina in the teleost (Pantodon buchholzi). Cell and Tissue Research 225, 2328.CrossRefGoogle Scholar
Goodale, M.A. (1983). Visually guided pecking in the pigeon (Columba livia). Brain, Behavior and Evolution 22, 2241.Google Scholar
Granit, R. (1955). Centrifugal and antidromic effects on ganglion cells of retina. Journal of Neurophysiology 18, 388411.CrossRefGoogle ScholarPubMed
Grober, M.S., Bass, A.H., Burd, G., Marchaterre, M.A., Segil, N., Scholz, K. & Hodgson, T. (1987). The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis. Brain Research 436, 148152.Google Scholar
Halpern, M., Wang, R.T. & Colman, D.R. (1976). Centrifugal fibers to the eye in a nonavian vertebrate: source revealed by horseradish peroxidase studies. Science 194, 11851188.Google Scholar
Hartline, H.K. & Ratliff, F. (1972). Inhibitory interaction in the retina of Limulus. In Handbook of Sensory Physiology, VII/2, ed. Fuortes, M.G.F., pp. 381447. Berlin: Springer-Verlag.Google Scholar
Hayes, B.P. & Holden, A.L. (1983). The distribution of centrifugal terminals in the pigeon retina. Experimental Brain Research 49, 189197.Google Scholar
Hayes, B.P. & Webster, K.E. (1981). Neurons situated outside the isthmo-optic nucleus and projecting to the eye in adult birds. Neuroscience Letters 26, 107112.Google Scholar
Hayes, B.P., Hodos, W., Holden, A.L. & Low, J.C. (1987). The projection of the visual field upon the retina of the pigeon. Vision Research 27, 3140.Google Scholar
Helfman, G.S. (1986). Fish behavior by day, night, and twilight. In The Behavior of Teleost Fishes, ed. Pitcher, T.J., pp. 366387. Baltimore, Maryland: The Johns Hopkins University Press.Google Scholar
Hodos, W. & Karten, H.J. (1970). Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeon. Journal of Comparative Neurology 140, 5368.Google Scholar
Holden, A.L. (1968). The centrifugal system running to the pigeon retina. Journal of Physiology (London) 197, 199219.CrossRefGoogle Scholar
Holden, A.L. (1978). Centrifugal action on pigeon retinal ganglion cells. Journal of Physiology (London) 282, 8P.Google Scholar
Holden, A.L. (1982). Electrophysiology of the avian retina. Progress in Retinal Research 1, 179196.Google Scholar
Holden, A.L. & Powell, T.P.S. (1972). The functional organization of the isthmo-optic nucleus in the pigeon. Journal of Physiology (London) 223, 419447.Google Scholar
Honrubia, F.M. & Elliot, J.H. (1968). Efferent innervation of the retina. Archives of Ophthalmology 80, 98103.CrossRefGoogle ScholarPubMed
Hoogland, P.V. & Welker, E. (1981). Telencephalic projections to the eye in Python reticulatus. Brain Research 213, 173176.Google Scholar
Hoogland, P.V., Vanderkrans, A., Koole, F. & Groenewegen, H.J. (1985). A direct projection from the nucleus oculomotorius to the retina in rats. Neuroscience Letters 56, 323328.Google Scholar
Hughes, T.E. & Hall, W.C. (1986). The transneuronal transport of horseradish peroxidase in the visual system of the frog (Rana pipiens). Neuroscience 17, 507518.Google Scholar
Hunt, S.P. & Brecha, N. (1984). The avian optic tectum: a synthesis of morphology and biochemistry. In Comparative Neurology of the Optic Tectum, ed. Vanegas, H., pp. 619648. New York: Plenum.CrossRefGoogle Scholar
Itaya, S.K. (1980). Retinal efferents from the pretectal area in the rat. Brain Research 201, 436441.CrossRefGoogle ScholarPubMed
Itaya, S.K. & Itaya, P.W. (1985). Centrifugal fibers to the rat retina from the medial pretectal area and the periaquaductal grey matter. Brain Research 326, 362365.Google Scholar
Ito, H. & Murakami, T. (1984). Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus. Journal of Comparative Neurology 229, 8096.Google Scholar
Ito, H., Tanaka, H., Sakamoto, N. & Morita, Y. (1981). Isthmic afferent neurons identified by the retrograde HRP method in a teleost (Navodon modestus). Brain Research 207, 163169.Google Scholar
Ito, H., Sakamoto, N. & Takatsuji, K. (1982). Cytoarchitecture, fiber connections, and ultrastructure of nucleus isthmi in a teleost (Navodon modestus). Journal of Comparative Neurology 205, 299311.Google Scholar
Ito, H., Vanegas, H., Murakami, T. & Morita, Y. (1984). Diameters and terminal patterns of retinofugal axons in their target area. An HRP study in two teleosts (Sebastiscus and Navodon). Journal of Comparative Neurology 230, 179197.Google Scholar
Jassik-Gerschenfeld, D. & Hardy, O. (1984). The avian optic tectum: neurophysiology and behavioral correlations. In Comparative Neurology of the Optic Tectum, ed. Vanegas, H., pp. 649686. New York: Plenum.Google Scholar
Karten, H.J., Hodos, W., Nauta, W.J.H. & Revzin, A.M. (1973). Neural connections of the visual Wulst of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology 150, 253278.Google Scholar
Keating, E.G., Gooley, S.G., Pratt, S.E. & Kelsey, J.E. (1983). Removing the superior colliculus silences eye movements normally evoked from stimulation of the parietal and occipital eye field. Brain Research 269, 145148.Google Scholar
Knipling, R.R. (1978). No deficit in near-field visual acuity of pigeons after transection of the isthmo-optic tract. Physiology and Behavior 21, 813816.Google Scholar
Knudsen, E.I. (1982). Auditory and visual maps of space in the optic tectum of the owl. Journal of Neuroscience 2, 11771194.Google Scholar
Koch, C. (1987). The action of the corticofugal pathway on sensory tha-lamic nuclei: a hypothesis. Neuroscience 23, 399406.Google Scholar
Kock, J-H. & Reuter, T. (1978). Retinal ganglion cells in the crusian carp (Carassius carassius). Journal of Comparative Neurology 179, 535548.Google Scholar
Korn, H. & Faber, D.S. (1979). Electrical interactions between vertebrate neurons: field effects and electrotonic coupling. In Neuroscience: 4th Study Program, ed. Schmitt, F.O. & Worden, F., pp. 333358. Cambridge, MA: MIT Press.Google Scholar
Labandeira-Garcia, J.L. (1988). The retinopetal system in the rat. Neuroscience Research 6, 8895.Google Scholar
Lanchester, B.S. & Mark, R.F. (1975). Pursuit and prediction in the tracing of moving food by a teleost fish (Acanthaluteres spilomelanurus). Journal of Experimental Biology 63, 627645.Google Scholar
Larsen, J.N.B. & Møller, M. (1985). Evidence for efferent projections from the brain to the retina of the Mongolian gerbil (Meriones unguiculatus). A horseradish peroxidase tracing study. Ada Ophtha-lomologica (Suppl.) 173, 63, 1114.Google Scholar
Larsen, J.N.B. & Møller, M. (1987). The presence of retinopetal fibres in the optic nerve of the Mongolian gerbil (Meriones unguiculatus). A horseradish peroxidase in vitro study. Experimental Eye Research 45, 763768.Google Scholar
Lauder, G.V. & Liem, K. (1983). Patterns of diversity and evolution in ray-finned fishes. In Fish Neurobiology, ed. Northcutt, R.G. & Davis, R.E., pp. 124. Ann Arbor: The University of Michigan Press.Google Scholar
Vail, J.H.La & Cowan, W.M. (1971). The development of the chick optic tectum, I: Normal morphology and cytoarchitectonic development. Brain Research 28, 391419.Google Scholar
Lorenz, K. (1962). The function of colour in coral reef fishes. Proceedings of the Royal Institute of Great Britain 39, 282296.Google Scholar
Luiten, P.G.M. (1981). Two visual pathways to the telencephalon in the nurse shark (Cinglymostoma cirratum), I: Retinal projections. Journal of Comparative Neurology 196, 531538.Google Scholar
Mangun, G.R., Hansen, J.C. & Hillyard, S.A. (1986). Electroretinograms reveal no evidence for centrifugal modulation of retinal inputs during selective attention in man. Psychophysiology 23, 156165.Google Scholar
Marchiafava, P.L. (1976). Centrifugal actions on amacrine and ganglion cells in the retina of the turtle. Journal of Physiology (London) 255, 137155.Google Scholar
Marin, G., Bodnarenko, S., McKenna, O. & Wallman, J. (1988). Neurons projecting to the retina: afferents and possible functions. Society for Neuroscience Abstracts 14, 992.Google Scholar
Mascetti, G.G., Marzi, C.A. & Berlucchi, G. (1969 a). Sympathetic influences on the dark discharge of the retina in the freely moving cat. Archivio Italiennes de Biologie 107, 158166.Google Scholar
Mascetti, G.G., Marzi, C.A. & Berlucchi, G. (1969 b). Charges in resting activity of retinal ganglion cells produced by electrical stimulation of the cervical sympathetic trunk. Archivio Italiennes de Biologie 107, 167174.Google Scholar
Matsumoto, N. (1975). Responses of the amacrine cell to optic nerve stimulation in the frog retina. Vision Research 15, 509514.Google Scholar
Matsutani, S., Uchiyama, H. & Ito, H. (1986). Cytoarchitecture, synaptic organization, and fiber connections of the nucleus olfactoretinalis in a teleost (Navodon modestus). Brain Research 373, 126138.CrossRefGoogle Scholar
Maturana, H.R. & Frenk, S. (1965). Synaptic connections of the centrifugal fibers of the pigeon retina. Science 150, 359362.Google Scholar
McIlwan, J.T. (1988). Saccadic eye movements evoked by electrical stimulation of the cat's visual cortex. Visual Neuroscience 1, 135143.Google Scholar
Meyer, C.C., Parker, D.M. & Salsen, E.A. (1976). Androgen-sensitive midbrain sites and visual attention in chicks. Nature 259, 689690.Google Scholar
Meyer, D.L. & Ebbesson, S.O.E. (1981). Retinofugal and retinopetal connections in the upside-down catfish (Synodontis nigriventris). Cell and Tissue Research 218, 389401.Google Scholar
Meyer, D.L., Schott, D. & Schaefer, K.P. (1970). Brain stimulation in the tectum opticum of freely swimming cod (Gadus morrhua L.): An experimental contribution to the sensorimotor coordination of the brainstem. Pflügers Archiv für die gesamte Physiologie des Menschen und der Tiere 314, 240252.Google Scholar
Meyer, D.L., Fiebig, E. & Ebbesson, S.O.E. (1981). A note in the reciprocal connections between the retina and the brain in the puffer fish (Tetraodon fluviatilis). Neuroscience Letters 23, 111115.Google Scholar
Meyer, D.L., Gerwerzhagen, K., Fiebig, E., Ahlswede, F. & Ebbesson, S.O.E. (1983). An isthmo-optic system in a body fish. Cell Tissue Research 231, 129133.Google Scholar
Miceli, D., Marchand, L., Repérant, J. & Ptito, M. (1987). Topographical organization of thalamo-visual Wulst projections in the pigeon. Investigative Ophthalmology and Visual Science (Suppl.) 28, 22.Google Scholar
Miles, F.A. (1971). Centrifugal effects in the avian retina. Science 170, 992995.Google Scholar
Miles, F.A. (1972 a). Centrifugal control of the avian retina, II: Receptive-filed properties of cells in the isthmo-optic nucleus. Brain Research 48, 93113.Google Scholar
Miles, F.A. (1972 b). Centrifugal control of the avian retina, III: Effects of electrical stimulation of the isthmo-optic tract on the receptive-field properties of retinal ganglion cells. Brain Research 48, 115129.Google Scholar
Miles, F.A. (1972 c). Centrifugal control of the avian retina, IV: Effects of reversible cold block of the isthmo-optic tract on the receptive-field properties of cells in the retina and isthmo-optic nucleus. Brain Research 48, 131145.Google Scholar
Molotchnikoff, S. & Tremblay, F. (1983). Influence of the visual cortex on responses of retinal ganglion cells in the rat. Journal of Neuroscience Research 10, 397409.Google Scholar
Molotchnikoff, S. & Tremblay, F. (1986). Visual cortex controls retinal output in the rat. Brain Research Bulletin 17, 2132.Google Scholar
Münz, H. & Claas, B. (1981). Centrifugal innervation of the retina in cichlid and poecilid fishes. A horseradish peroxidase study. Neuroscience Letters 22, 223226.Google Scholar
Münz, H. & Claas, B. (1988). The terminal nerve and its development in the teleost fishes. Annals of the New York Academy of Science 519, 5059.Google Scholar
Münz, H., Stumpf, W.E. & Jennes, L. (1981). LHRH systems in the brain of platyfish. Brain Research 221, 113.Google Scholar
Münz, H., Claas, B., Stumpf, W.E. & Jennes, L. (1982). Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell Tissue Research 222, 313323.Google Scholar
Murakami, M. & Shimoda, Y. (1977). Identification of amacrine and ganglion cells in the carp retina. Journal of Physiology (London) 264, 801818.Google Scholar
Murakami, T., Morita, Y. & Ito, H. (1983). Extrinsic and intrinsic fiber connections of the telencephalon in teleost (Sebastiscus mar-moratus). Journal of Comparative Neurology lift, 115131.Google Scholar
Nagai, Y., Suzuki, H. & Tasaki, K. (1981). The effect of efferent fibers in the optic nerve on the retinal ganglion cells of a marine teleost (Navodon modestus). Journal of the Physiological Society of Japan 43, 341.Google Scholar
Nelson, J.S. (1984). Fishes of the World (2nd edition). New York: John Wiley & Sons.Google Scholar
Noback, C.R. & Mettler, F. (1973). Centrifugal fibers to the retina in the rhesus monkey. Brain Behav. Evol. 7, 382399.Google Scholar
Northmore, D.P.M. (1988). Visual response properties of the teleostean nucleus isthmi. Investigative Ophthalmology and Visual Science (Suppl.) 29, 330.Google Scholar
O'flaherty, J.J. (1970). A Golgi analysis of the optic tectum of the mallard duck. Jornal für Hirnforschung 12, 389404.Google Scholar
Ogasawara, K., McHaffie, J.G. & Stein, B.E. (1984). Two visual corticotectal systems in cat. Journal of Neurophysiology 52, 12261245.Google Scholar
Ogden, T.E. & Brown, K.T. (1964). Intraretinal responses of the cynamolgus monkey to electrical stimulation of the optic nerve and retina. Journal of Neurophysiology 27, 682705.Google Scholar
Oka, Y., Munro, A.D. & Lam, T.J. (1986). Retinopetal projections from a subpopulation of ganglion cells of the nervus terminalis in the dwarf gourami (Colisa lalia). Brain Research 367, 341345.Google Scholar
O'leary, D.D.M. & Cowan, W.M. (1982). Further studies on the development of the isthmo-optic nucleus with special reference to the occurrence and fate of ectopic and ipsilaterally projecting neurons. Journal of Comparative Neurology 212, 399416.Google Scholar
Parver, L.M., Auker, C.R., Carpenter, D.O. & Doyle, T. (1982). Choroidal blood flow, II: Reflexive control in the monkey. Archiv für Ophthalmologie 100, 13271330.Google Scholar
Pearlman, A.L. & Hughes, C.P. (1976). Functional role of efferents to the avian retina, II: Effects of reversible cooling of the isthmo-optic nucleus. Journal of Comparative Neurology 166, 123132.Google Scholar
Perichoux, J., Weidner, C., Repérant, J. & Miceli, D. (1977). An experimental study of the visual system of cyprinid fish using the HRP methods. Brain Research 130, 531537.Google Scholar
Pettigrew, J.D. & Konishi, M. (1976). Neurons selective for orientation and binocular disparity in the visual Wulst of the barn own (Tyto alba). Science 193, 675678.Google Scholar
Plummer, C.J., Harris, J.P. & Phillipson, O.T. (1986). Modification of retinal dopamine receptor binding by lesions of the tecto-retinal pathway in the rat. Journal of Physiology (London) 381, 52P.Google Scholar
Cajal, S.Ramón Y (1972). The Structure of the Retina (translated by Thorpe, S.A. & Glickstein, M.), Springfield: Charles C. Thomas Publisher.Google Scholar
Reiner, A. & Karten, H.J. (1982). Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (Columba livia). Journal of Comparative Neurology 204, 165187.Google Scholar
Reiner, A. & Karten, H.J. (1983). The laminar source of efferent projections from the avian Wulst. Brain Research 275, 349354.Google Scholar
Reiner, A., Brecha, N.C. & Karten, H.J. (1982 a). Basal ganglia pathways to the tectum: the afferent and efferent connections of the lateral spiriform nucleus of pigeon. Journal of Comparative Neurology 208, 1636.Google Scholar
Reiner, A., Karten, H.J. & Brecha, N.C. (1982 b). Enkephalin-mediated basal ganglia influences over the optic tectum: immunohistochemistry of the tectum and the lateral spiniform nucleus in pigeon. Journal of Comparative Neurology 208, 3753.Google Scholar
Repérant, J. & Gallego, A. (1976). Fibres centrifuges dans la rétine humaine. Archives d Anatomie microscopique et de Morphologie experimentale 65, 103120.Google Scholar
Repérant, J., Peyrichoux, J., Weidner, C., Miceli, D. & Rio, J.P. (1980). The centrifugal visual system in Vipera aspis. An experimental study using axonal transport of HRP and [3H]adenosine. Brain Research 183, 435441.Google Scholar
Revzin, A.M. (1979). Functional localization in the nucleus rotundus. In Neural Mechanisms and Behavior in the Pigeon, ed. Granda, A.M. & Maxwell, J.H., pp. 165175. New York: Plenum Press.Google Scholar
Ritchie, T.C. & Leonard, R.B. (1983). Immunocytochemical demonstration of serotonergic neurons and processes in the retina and optic nerve of the stingray (Dasyatis sabina). Brain Research 267, 352356.Google Scholar
Rodieck, R.W. (1973). The Vertebrate Retina: Principles of Structure and Function. San Francisco: W.H. Freeman and Co., pp. 673689.Google Scholar
Rodriguez, J.N., Kah, O., Breton, B. & Menn, F.Le (1985). Immunocytochemical localization of GnRH (gonadotropin releasing hormone) systems in the brain of a marine teleost fish, the sole. Experientia 41, 15741576.Google Scholar
Rogers, L.J. & Miles, F.A. (1972). Centrifugal control of the avian retina, V: Effects of lesions of the isthmo-optic nucleus on visual behavior. Brain Research 48, 147156.Google Scholar
Rusoff, A.C. & Hapner, S.J. (1989). Organization of retinopetal axons in the optic nerve of the cichlid fish (Herotilapia multispinosa) (under review for publication).Google Scholar
Rusoff, A.C. & Hendrickson, A.E. (1989). Some mammalian retinae lack FMRFamide-like immunoreactive efferents. Investigative Ophthalmology and Visual Science 30, 791794.Google Scholar
Sakamoto, N. & Ito, H. (1982). Fiber connections of the corpus glomerulosum in a teleost (Navodon modestus). Journal of Comparative Neurology 205, 291298.Google Scholar
Sakamoto, N., Ito, H. & Ueda, S. (1981). Topographic projections between the nucleus isthmi and the optic tectum in a teleost (Navodon modestus). Brain Research 224, 225234.Google Scholar
Sandeman, D.C. & Rosenthal, N.P. (1974). Efferent axons in the fish optic nerve and their effect on the retinal ganglion cell. Brain Research 68, 4154.Google Scholar
Sarnat, H.B. & Netsky, M.G. (1981). Evolution of the Nervous System, 2nd ed.New York: Oxford Univ. Press.Google Scholar
Schiller, P.H. (1984). The superior colliculus and visual function. In Handbook of Physiology, Section 1, Vol. VIII, Part 1, ed. Dajuan-Smith, I. pp. 457505.Google Scholar
Schilling, T.F. & Northcutt, R.G. (1987). Amniotes and anamniotes may possess homoplastic retinopetal projections from the isthmic tegmentum. Society for Neuroscience Abstracts 13, 130.Google Scholar
Schmidt, J.T. (1979). The laminar organization of optic nerve fibers in the tectum of goldfish. Proceedings of the Royal Society B 205, 287306.Google Scholar
Schnyder, H. & Künzle, H. (1983). The retinopetal system in the turtle (Pseudemys scripta elegans). Cell and Tissue Research 234, 219224.Google Scholar
Schnyder, H. & Künzle, H. (1984). Is there a retinopetal system in the rat? Experimental Brain Research 56, 502508.Google Scholar
Schütte, M. & Weiler, R. (1988). Mesencephalic innervation of the turtle retina by a single serotonin-containing neuron. Neuroscience Letters 91, 289294.Google Scholar
Segal, R.L. & Beckstead, R.M. (1984). The lateral suprasylvian corticotectal projection in cats. Journal of Comparative Neurology 225, 259275.Google Scholar
Sherman, S.M. & Koch, C. (1986). The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 120.Google Scholar
Shortess, G.K. & Klose, E.F. (1975). The area of the nucleus isthmo-opticus in the American kestrel (Falco sparverius) and the red-tailed hawk (Butero jamaicensis). Brain Research 88, 525531.Google Scholar
Shortess, G.K. & Klose, E. (1977). Effects of lesions involving efferent fibers to the retina in pigeons (Columba livia). Physiology and Behavior 18, 409414.Google Scholar
Simpson, J.I. (1984). The accessory optic system. Annual Reviews of Neuroscience 7, 1341.Google Scholar
Singer, W. (1977). Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiological Reviews 57, 386420.Google Scholar
Sohal, G.S. & Narayanan, C.H. (1974). The development of the isthmo-optic nucleus in the duck (Anasplatyrhynchos), I: Changes in cell number and cell size during normal development. Brain Research 77, 243255.Google Scholar
Sparks, D.L. (1986). Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiological Reviews 66, 118171.Google Scholar
Springer, A.D. (1983). Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis. Journal of Comparative Neurology 214, 404415.Google Scholar
Springer, A.D. & Gaffney, J.S. (1981). Retinal projections in the goldfish: a study using cobaltous lysine. Journal of Comparative Neurology 203, 401424.Google Scholar
Springer, A.D. & Mednick, A.S. (1985). Retinofugal and retinopetal projections in the cichlid fish (Astronotus ocellatus). Journal of Comparative Neurology 236, 179196.Google Scholar
Stein, B.E. (1984). Multimodal representation in the superior colliculus and optic tectum. In Comparative Neurology of the Optic Tectum, ed. Vanegas, H., pp. 819841. New York: Plenum.Google Scholar
Stein, B.E. & Gaither, N.S. (1981). Sensory representation in reptilian optic tectum: some comparisons with mammals. Journal of Comparative Neurology 202, 6987.Google Scholar
Stell, W.K. (1972). The morphological organization of the vertebrate retina. In Handbook of Sensory Physiology, VII/IB, ed. Fuortes, M.G.F., pp. 111213. Berlin: Springer-Verlag.Google Scholar
Stell, W.K., Walker, S.E., Chohan, K.S. & Ball, A.K. (1984). The goldfish nervus terminalis: a luternizing hormone-releasing hormone and molluscan cardioexcitatory peptide immunoreactive olfactoreti-nal pathway. Proceedings of the National Academy of Sciences of the U.S.A. 81, 940944.Google Scholar
Stell, W.K., Walker, S.E. & Ball, A.K. (1988). Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes. Annals of the New York Academy of Science 519, 8096.Google Scholar
Swanson, L.W., Cowan, W.M. & Jones, E.G. (1974). An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. Journal of Comparative Neurology 156, 143164.Google Scholar
Takahashi, Y., Okamura, H., Terubayashi, H., Fujisawa, H. & Ibata, Y. (1986). Retinopetal projection of LHRH-like immunoreactive neurons in the eel (Anguilla japonica) brain: combined techniques of retrograde axonal transport and immunohistochemistry in the same tissue section. Proceedings of the International Society of Eye Research 4, 62.Google Scholar
Tasaki, K., Tsukahara, Y. & Watanabe, M. (1978). Efferent system in the retina of the frog (Rana catesbiana). Sensory Process 2, 396407.Google Scholar
Terubayashi, H., Fujisawa, H., Itoi, M. & Ibata, Y. (1983). Hypothalamo-retinal centrifugal projection in the dog. Neuroscience Letters 40, 16.Google Scholar
Uchiyama, H. (1989). Immunohistochemical subpopulations of retinopetal neurons in the nucleus olfactoretinalis in a teleost, the whitespotted greenling (Hexagrammos stelleri) Journal of Comparative Neurology (in press).Google Scholar
Uchiyama, H. & Ito, H. (1984). Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae, Teleostei). Brain Research 298, 1124.Google Scholar
Uchiyama, H. & Watanabe, M. (1985). Tectal neurons projecting to the isthmo-optic nucleus in the Japanese quail. Neuroscience Letters 58, 381385.Google Scholar
Uchiyama, H., Sakamoto, N. & Ito, H. (1981). A retinopetal nucleus in the preoptic area in a teleost, (Navodon modestus). Brain Research 222, 119124.Google Scholar
Uchiyama, H., Ito, H. & Nakamura, S. (1985). Electrophysiological evidence for tectal efferents to the neurons projecting to the retina in a teleost fish. Experimental Brain Research 57, 408410.Google Scholar
Uchiyama, H., Matsutani, S. & Ito, H. (1986). Tectal projection neurons to the retinopetal nucleus in the filefish. Brain Research 369, 260266.Google Scholar
Uchiyama, H., Matsutani, S. & Watanabe, M. (1987). Activation of the isthmo-optic neurons by the visual Wulst stimulation. Brain Research 406, 322325.Google Scholar
Uchiyama, H., Matsutani, S. & Ito, H. (1988 a). Pretectum and accessory optic system in the filefish (Navodon modestus) (Balistidae, Teleostei) with special reference to visual projections to the cerebellum and oculomotor nuclei. Brain, Behavior and Evolution 31, 170180.Google Scholar
Uchiyama, H., Reh, T.A. & Stell, W.K. (1988 b). Immunocytochemical and morphological evidence for a retinopetal projection in anuran amphibians. Journal of Comparative Neurology 274, 4859.Google Scholar
Vanegas, H. & Ito, H. (1983). Morphological aspects of the teleostean visual system: a review. Brain Research Reviews 6, 117137.Google Scholar
Vanegas, H., Amat, J. & Essayag-Millan, E. (1973). Electrophysiological evidence of tectal efferents to the fish eye. Brain Research 54, 309313.Google Scholar
Ventura, J. & Mathieu, M. (1959). Exogenous fibres of the retina. Transactions of the Canadian Ophthalmological Society 22, 184196.Google Scholar
Vesselkin, N.P., Ermakova, T.V., Repérant, J., Kosareva, A.A. & Kenigfest, N.B. (1980). The retinofugal and retinopetal systems Lampetra fluviatilis. An experimental study using radioautographic and HRP methods. Brain Research 195, 453460.Google Scholar
Vesselkin, N.P., Repérant, J., Kenigfest, N.B., Miceli, D., Ermakova, T.V. & Rio, J.P. (1984). An anatomical and electrophysiological study of the centrifugal visual system in the lamprey (Lampetra fluviatilis). Brain Research 292, 4156.Google Scholar
Villar, M., Vitale, M.L. & Parisi, M.N. (1987). Dorsal raphe serotonergic projection to the retina. A combined peroxidase tracing-neurochemical/high-performance liquid chromatography study in the rat. Neuroscience 22, 681686.Google Scholar
Bartheld, C.S.Von & Meyer, D.L. (1988). Retinofugal and retinopetal projections in the teleost (Channa micropeltes) (Channiformes). Cell and Tissue Research 251, 651663.Google Scholar
Bartheld, C.S.Von, Rickmann, M.J. & Meyer, D.L. (1986). A light-and electron-microscopic study of mesencephalic neurons projecting to the ganglion of the nervus terminalis in the goldfish. Cell and Tissue Research 246, 6370.Google Scholar
Wagman, I.H. (1964). Eye movements induced by electric stimulation of cerebrum in monkeys and their relationship to bodily movements. In The Oculomotor System, ed. Bender, M.B., pp. 1839. New York: Harper & Row.Google Scholar
Wakakura, M. & Ishikawa, S. (1982). Ultrastructural study on centrifugal fibers in the feline retina. Japanese Journal of Ophthalmology 26, 282291.Google Scholar
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Michigan: Cranbrook Institute of Science.Google Scholar
Wang, R. & Halpern, M. (1977). Afferent and efferent connections of thalamic nuclei of the visual system of garter snake. Anatomical Records 187, 741742.Google Scholar
Watanabe, M., Ito, H. & Masai, H. (1983). Cytoarchitecture and visual receptive neurons in the Wulst of the Japanese quail (Coturnix coturnix japonica). Journal of Comparative Neurology 213, 188198.Google Scholar
Weidner, C., Miceli, D. & Repérant, J. (1983). Orthograde axonal and transcellular transport of different fluorescent tracers in the primary visual system of the rat. Brain Research 272, 129136.Google Scholar
Weidner, C., Repérant, J., Desroches, A-M., Miceli, D. & Vesselkin, N.P. (1987). Nuclear origin of the centrifugal visual pathway in birds of prey. Brain Research 436, 153160.Google Scholar
Weiler, R. (1985). Mesencephalic pathway to the retina exhibits en-kephalin-like immunoreactivity. Neuroscience Letters 55, 1116.Google Scholar
Williams, B., Amat, J. & Vanegas, H. (1981). Visual vestibular and proprioceptive input to the mesencephalic nucleus isthmi (NI) in teleosts and amphibians. Neuroscience Letters (Suppl.) 7, S110.Google Scholar
Wilson, P. (1980). The organization of the visual hyperstriatum in the domestic chick, I: Topology and topography of the visual projection. Brain Research 188, 319332.Google Scholar
Winterbottom, R. (1974). The familial phylogeny of the Tetraodontiformes (Pisces, Acanthopterygii) as evidenced by their comparative myology. Smithsonian Contribution of Zoology 155.Google Scholar
Wirsig-Wiechmann, C.R. & Basinger, S.F. (1988). FMRFamide-immunoreactive retinopetal fibers in the frog (Rana pipiens): demonstration by lesion and immunocytochemical techniques. Brain Research 449, 116126.Google Scholar
Wolf-Oberhollenzer, F. (1987). A study of the centrifugal projections to the pigeon retina using two fluorescent markers. Neuroscience Letters 73, 1620.Google Scholar
Woodson, W., Shimizu, T. & Karten, H.J. (1988). Afferent and efferent connections of the isthmo-optic nucleus in pigeon (Columba Hvia). Society for Neuroscience Abstracts 14, 1121.Google Scholar
Wurtz, R.H. & Albano, J.E. (1980). Visual-motor function of the primate superior colliculus. Annual Reviews of Neuroscience 3, 189226.Google Scholar
Yazulla, S. & Granda, A.M. (1973). Opponent-color units in the thalamus of the pigeon (Columba livia). Vision Research 13, 15551563.Google Scholar
Ye, X., Laties, A.M. & Stone, R.A. (1989). Peptidergic innervation of the retinal vasculature and optic nerve head. Investigative Ophthalmology and Visual Science (Suppl.) 30, 20.Google Scholar
Zeigler, H.P., Levitt, P.W. & Levine, R.R. (1980). Eating in the pigeon (Columba Hvia): movement patterns, stereotypy, and stimulus control. Journal of Comparative and Physiological Psychology 94, 783794.Google Scholar
Zucker, C.L. & Dowling, J.E. (1987). Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina. Nature 330, 166168.Google Scholar