Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T04:13:55.721Z Has data issue: false hasContentIssue false

Calbindin and calretinin localization in retina from different species

Published online by Cambridge University Press:  02 June 2009

Brigitte Pasteels
Affiliation:
Laboratoire d'Histologie, Faculté Médecine, Université Libre de Bruxelles (ULB), 2 rue Evers, B-1000 Brussels, Belgium
John Rogers
Affiliation:
Physiological Laboratory, University of Cambridge, Downing St., Cambridge CB2 3EG, United Kingdom
François Blachier
Affiliation:
Laboratoire d'Histologie, Faculté Médecine, Université Libre de Bruxelles (ULB), 2 rue Evers, B-1000 Brussels, Belgium
Roland Pochet
Affiliation:
Laboratoire d'Histologie, Faculté Médecine, Université Libre de Bruxelles (ULB), 2 rue Evers, B-1000 Brussels, Belgium

Abstract

Calbindin-D28K and calretinin are homologous calcium-binding proteins localized in many neurons of the central nervous system. We have compared polyclonal antibodies against calbindin and calretinin and have shown by western blots using purified calbindin and calretinin from rat that (1) anti-calretinin does not recognize calbindin and (2) anti-calbindin presents some cross-reactivity with calretinin.

In this report, we have compared by immunohistochemistry the localization of both calcium-binding proteins in the retina of monkey, pig, sheep, rat, cat, pigeon, and salamander. These results are compared with previous data for chick. There are many differences between species and not within species, but some aspects of the distribution are conserved. All species, except rat and monkey, have some cones which contain calbindin only. Most species also have some bipolar cells containing calbindin only. Calretinin is rarely seen in photoreċeptors or bipolar cells. All species have horizontal cells which contain calretinin or calbindin or both. All species have amacrine cells and ganglion cells containing one or other protein.

In the cat ganglion cell layer, the calretinin antisera define a new, asymmetric, type of cell.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baimbridge, K.G. & Kao, J. (1988). Calbindin-D28K protects against glutamate induced neurotoxicity in rat CA1 pyramidal neuron cultures. Society for Neuroscience Abstracts 14, 507.1.Google Scholar
Borwein, B., Borwein, D., Medevios, J. & McGowan, J.W. (1980). The ultrastructure of monkey foveal photoreceptors with special reference to the structure, shape, size, and spacing of the foveal cones. American Journal of Anatomy 159, 125146.CrossRefGoogle Scholar
Bowmaker, J.K. (1977). The visual pigments, oil droplets, and spectral sensitivity of the pigeon. Vision Research 17, 11291138.CrossRefGoogle ScholarPubMed
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells in the domestic cat's retina. Journal of Physiology 240, 397419.CrossRefGoogle ScholarPubMed
Brann, M.R. & Cohen, L.V. (1987). Diurnal expression of transducin mRNA and translocation of transducin in rods of rat retina. Science 235, 585587.CrossRefGoogle ScholarPubMed
Broekhuyse, R.M., Janssen, A.P.M. & Tolhuizen, E.F.J. (1987). Effect of light-adaptation on the binding of 48-kDa protein (S-antigen) to photoreceptor cell membranes. Current Eye Research 6, 607610.CrossRefGoogle ScholarPubMed
Dowling, J.E. (1987). The Retina: An Approachable Part of the Brain. Cambridge, Massachusetts: Belknap Harvard, pp. 135138.Google Scholar
Endo, T., Kobayshi, S. & Onaya, T. (1985). Parvalbumin in rat cerebrum, cerebellum, and retina during postnatal development. Neuroscience Letters 60, 279282.CrossRefGoogle ScholarPubMed
Endo, T., Kobayashi, M., Kobayashi, S. & Onaya, T. (1986). Immunocytochemical and biochemical localization of parvalbumin in the retina. Cell Tissue Research 243, 213217.CrossRefGoogle ScholarPubMed
Forti, S., Menini, A., Rispoli, G. & Torre, V. (1989).Kinetics of phototransduction in retinal rods of the newt (Triturus cristatus). Journal of Physiology 419, 265295.CrossRefGoogle ScholarPubMed
Fournet, N., Garcia-Segura, L.M., Norman, A.W. & Orci, L. (1986). Selective localization of calcium-binding protein in human brain stem, cerebellum, and spinal cord. Brain Research 399,310316.CrossRefGoogle ScholarPubMed
Fukuda, Y., Hsiao, C.-F., & Watanabe, M. (1985). Morphological correlates of Y-, X-, and W-type ganglion cells in the cat's retina. Vision Research 25, 319327.CrossRefGoogle Scholar
Garcia-Segura, L.M., Baetens, D., Roth, J., Norman, A.W. & Orci, L. (1984). Immunohistochemical mapping of the calcium-binding protein immunoreactivity in the rat central nervous system. Brain Research 296, 7586.CrossRefGoogle ScholarPubMed
Gerfen, C.R., Baimbridge, K.G. & Miller, J.J. (1985). The neostriatal mosaic compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey. Proceedings of the National Academy of Sciences of the U.S.A. 82, 87808784.CrossRefGoogle Scholar
Hatakenaka, S., Kiyama, H., Tohyama, M. & Miki, N. (1985). Immunohistochemical localization of chick retinal 24-kD protein (Visinin) in various vertebrate retinae. Brain Research 331, 209215.CrossRefGoogle Scholar
Hodgkin, A.L., McNaughton, P.A. & Nunn, B.J. (1987). Measurement of sodium-calcium exchange in salamander rods. Journal of Physiology 391, 347370.CrossRefGoogle ScholarPubMed
Jande, S.S., Maler, L. & Lawson, D.E.M. (1981). Immunohistochemical mapping of vitamin D-dependent calcium-binding protein in brain. Nature 294, 765767.CrossRefGoogle ScholarPubMed
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells, and ganglion cells of the cat retina: a golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Kolb, H. & Nelson, R. (1984). Neural architecture of the cat retina. Progress in Retinal Research 3, 2160.CrossRefGoogle Scholar
Langeron, M. (1942). Précis de Microscopie. Paris, France: Masson Ed.Google Scholar
Marc, R.E. (1986). Neurochemical stratification in the IPL of the vertebrate retina. Vision Research 26, 223238.CrossRefGoogle Scholar
Matthews, H.R., Murphy, R.L.W., Fain, G.L. & Lamb, T.D. (1988). Photoreceptor light adaptation is mediated by cytoplasmic calcium concentration. Nature 334, 6769.CrossRefGoogle ScholarPubMed
McNaughton, P.A. (1990). The light response of vertebrate photoreceptors. Physiological Reviews (in press).CrossRefGoogle Scholar
Miller, J.J. & Baimbridge, K.G. (1983). Biochemical and immunohistochemical correlates of kindling-induced epilepsy: role of calcium-binding protein. Brain Research 278, 322326.CrossRefGoogle ScholarPubMed
Nakatani, K. & Yau, K.-W. (1988).Calcium and light adaptation in retinal cones. Nature 334, 6971.CrossRefGoogle Scholar
Parmentier, M., Ghysens, M., Rypens, F., Lawson, D.E.M., Pasteels, J.L. & Pochet, R. (1987). Calbindin in vertebrate classes: immunohistochemical localization and western blot analysis. General and Comparative Endocrinology 65, 399407.CrossRefGoogle ScholarPubMed
Pasteels, B., Miki, N., Hatakenaka, S. & Pochet, R. (1987 a). Immunohistochemical cross reactivity and electrophoretic comigration between calbindin-D-27kDa and visinin. Brain Research 412, 107113.CrossRefGoogle ScholarPubMed
Pasteels, B., Parmentier, M., Lawson, D.E.M., Verstappen, A. & Pochet, R. (1987 b). Calcium-binding protein immunoreactivity in pigeon retina. Investigative Ophthalmology and Visual Science 28, 658664.Google ScholarPubMed
Pochet, R., Parmentier, M., Lawson, D.E.M. & Pasteels, J.L. (1985). Rat brain synthesizes two “Vitamin D-dependent” calcium binding proteins. Brain Research, 345, 251256.CrossRefGoogle ScholarPubMed
Pochet, R., Pipeleers, D.G. & Malaisse, W.J. (1987). Calbindin-D-27kDa: preferential localization in non-β islet cells of the rat pancreas. Biology of the Cell 61, 155161.CrossRefGoogle Scholar
Pochet, R., Blachier, F., Lawson, D.E.M. & Malaisse, W.J. (1989). Presence of calbindin-D28K in endocrine pancreatic tumoral cells of the RINm5F line. International Journal of Pancreatology 5, 295304.CrossRefGoogle Scholar
Rabié, A., Thomasset, M., Parkes, C.O. & Clavel, M.C. (1985). Immunocytochemical detection of 28,000 MW calcium-binding protein in horizontal cells of the rat retina. Cell Tissue Research 240, 493496.CrossRefGoogle Scholar
Rochon-Duvigneaud, A. (1943). Les yeux et la vision des vertébrés. Paris, France: Masson Ed.Google Scholar
Rogers, J.H. (1987). Calretinin: a gene for a novel calcium-binding protein expressed principally in neurons. Journal of Cell Biology 105, 13431353.CrossRefGoogle ScholarPubMed
Rogers, J.H. (1989). Two CaBPs mark many chick sensory neurons. Neuroscience 31, 697709.CrossRefGoogle Scholar
Röhrenbeck, J., Wässle, H. & Heizmann, C.W. (1987). Immunocytochemical labeling of horizontal cells in mammalian retina using antibodies against calcium-binding proteins. Neuroscience Letters 77, 255260.CrossRefGoogle ScholarPubMed
Röhrenbeck, J., Wässle, H. (1989). Localization of parvalbumin in the cat retina. First European Symposium on CaBPs in Normal and Transformed Cells, Bruxelles, Belgium, 04 2022, 1989, Miniposter C7.Google Scholar
Röhrenbeck, J., Wässle, H. & Boycott, B.B. (1989). Horizontal cells in the monkey retina: immunocytochemical staining with antibodies against calcium-binding proteins. European Journal of Neuroscience 1, 407420.CrossRefGoogle ScholarPubMed
Roman, A., Brisson, P., Pasteels, B., Demol, S., Pochet, R. & Collin, J.P. (1988). Pineal-retinal molecular relationship; immunocytochemical evidence of calbindin 27kDa in pineal transducers. Brain Research 442, 3342.CrossRefGoogle Scholar
Saito, H. (1983). Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. Journal of Comparative Neurology 221, 279288.CrossRefGoogle Scholar
Schreiner, D.S., Jande, S.S. & Lawson, D.E.M. (1985). Target cells of vitamin D in the retina. Acta Anatomica 121, 153.CrossRefGoogle Scholar
Schwartz, E.A. (1982). Calcium-independent release of GABA from isolated horizontal cells of the toad retina. Journal of Physiology 323, 211227.CrossRefGoogle ScholarPubMed
Shkolnik-Yarros, E.G. (1971). Neurons of the cat's retina. Vision Research 11, 726.CrossRefGoogle ScholarPubMed
Spencer, R., Charman, M., Wilson, P.M. & Lawson, D.E.M. (1978). The relationship between vitamin-D-stimulated calcium transport and intestinal calbindin in the chicken. Biochemical Journal 70, 93101.CrossRefGoogle Scholar
Steinberg, R.H., Reid, M. & Lacy, P.L. (1973). The distribution of rods and cones in the retina of the cat (Felis domesticus). Journal of Comparative Neurology 148, 229248.CrossRefGoogle ScholarPubMed
Sterling, P. (1983). Microcircuitry of the cat retina. Annual Reviews of Neuroscience 6, 149185.CrossRefGoogle ScholarPubMed
Sterling, P., Freed, M. & Smith, R.G. (1986). Microcircuitry and functional architecture of the cat retina. Trends in Neurosciences 9, 186192.CrossRefGoogle Scholar
Vacca, L.L., Abrahams, S.J. & Naftchi, N.E. (1980). A modified peroxidase-antiperoxidase procedure for improved localization of tissue antigens: localization of substance P in rat spinal cord. Journal of Histochemical Cytochemistry 28, 297307.CrossRefGoogle ScholarPubMed
Vandesande, F. (1983). Immunohistochemical double straining techniques. In Immunochemistry, Vol. 3, Chap. 10, ed. Cuello, A.C., pp. 257272. IBRO Handbook Series, New York: J. Wiley & Sons.Google Scholar
Verstappen, A., Parmentier, M., Chirnoaga, M., Lawson, D.E.M., Pasteels, J.L. & Pochet, R. (1986). Vitamin D-dependent calcium- binding protein immunoreactivity in human retina. Ophthalmic Research 18, 209214.CrossRefGoogle ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B.B. (1978). Topography of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B 203, 269291.Google ScholarPubMed
White, J.G., Amos, W.B. & Fordham, M. (1987). An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy. Journal of Cell Biology 105, 4148.CrossRefGoogle ScholarPubMed
Yazulla, S. (1983). Stimulation of GABA release from retinal horizontal cells by potassium and acidic amino-acid agonists. Brain Research 275, 6174.CrossRefGoogle ScholarPubMed