Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T21:27:31.408Z Has data issue: false hasContentIssue false

Asymmetric retinal growth in the adult teleost green sunfish (Lepomis cyanellus)

Published online by Cambridge University Press:  02 June 2009

David A. Cameron
Affiliation:
Department of Biology, Natural Science Building, University of Michigan, Ann Arbor

Abstract

Previous studies on fish retina have suggested that a curved, non-fused embryonic fissure is associated with, and perhaps caused by, asymmetric growth along the retina's marginal germinal zone (where neurons and Miiller glia are added appositionally throughout life). In this report retinal growth was measured directly in adult green sunfish (Lepomis cyanellus), which has a curved, non-fused embryonic fissure. Growth was asymmetric in both small and large fish: ventral and nasal retina grew more than temporal and dorsal retina. This asymmetry was due to different net rates of cellular addition, rather than differential passive expansion. The absolute rates of retinal growth in the centroperipheral direction were roughly exponential functions of fish size—smaller fish grow faster than large fish—but the area of new retina added per unit time did not vary with fish size. Visual implications of asymmetric retinal growth are evaluated.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlbert, I.-B. (1976). Organization of the cone cells in the retinae of salmon (Salmo salar) and trout (Salmo trutta trutta) in relation to their feeding habits. Acta Zoologica 57, 1335.CrossRefGoogle Scholar
Ali, M.A. (1964). Stretching of the retina during growth of salmon (Salmo salar). Growth 28, 8398.Google ScholarPubMed
Allen, E.E. & Fernald, R.D. (1985). Spectral sensitivity of the African cichlid fish, Haplochromis burtoni. Journal of Comparative Physiology A 157, 247253.CrossRefGoogle ScholarPubMed
Baburina, E.A., Bogatyrev, P.B. & Protasov, V.R. (1968). A study of age variation of acuity of sight of some fish. Zoologicheskii Zhurnal 47, 13641369.Google Scholar
Baerends, G.P., Bennema, B.E. & Vogelzang, A.A. (1960). Über die Änderung der Sehschärfe mit dem Wachstum bei Aequidens portalegrensis (Hensel). Zoologische Jahrbücher Abteilung fur Systematik Ökologische 88, 6778.Google Scholar
Blaxter, J.H.S. & Jones, M.P. (1967). The development of the retina and retinomotor responses in the herring. Journal of the Marine Biology Association of the United Kingdom 47, 677697.CrossRefGoogle Scholar
Breck, J.E. & Gitter, M.J. (1983). Effect of fish size on the reactive distance of bluegill (Lepomis macrochirus) sunfish. Canadian Journal of Fisheries and Aquatic Sciences 40, 162167.CrossRefGoogle Scholar
Cameron, D.A. & Easter, S.S. Jr. (1993). The cone photoreceptor mosaic of the green sunfish, Lepomis cyanellus. Visual Neuroscience 10, 375384.CrossRefGoogle ScholarPubMed
Collin, S.P. & Pettigrew, J.D. (1989). Quantitative comparison of the limits on visual spatial resolution set by the ganglion cell layer in twelve species of reef teleosts. Brain, Behavior, and Evolution 34, 184192.Google ScholarPubMed
Douglas, R.H. & Hawryshyn, C.W. (1990). Behavioral studies of fish vision: An analysis of visual capabilities. In The Visual System of Fish, ed. Douglas, R.H. & Djamgoz, M.B.A., pp. 373418. London: Chapman & Hall.CrossRefGoogle Scholar
Easter, S.S. Jr. (1983). Postnatal neurogenesis and changing connections. Trends in Neurosciences 6, 5356.CrossRefGoogle Scholar
Easter, S.S. Jr. (1992) Retinal growth in foveated teleosts: Nasotemporal asymmetry keeps the fovea in temporal retina. Journal of Neuroscience 12, 23812392.CrossRefGoogle ScholarPubMed
Easter, S.S. Jr., Johns, P.R. & Baumann, L.R. (1977). Growth of the adult goldfish eye. I.: Optics. Vision Research 17, 469477.CrossRefGoogle ScholarPubMed
Evans, B.I. & Fernald, R.D. (1993). Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanus). Visual Neuroscience 10, 10551064.CrossRefGoogle ScholarPubMed
Fernald, R.D. (1985). Growth of the teleost eye: Novel solutions to complex constraints. Environmental Biology of Fishes 13, 113123.CrossRefGoogle Scholar
Hairston, N.G., Li, K.T. & Easter, S.S. Jr. (1982). Fish vision and the detection of planktonic prey. Science 218, 12401242.CrossRefGoogle ScholarPubMed
Hester, F.J. (1968). Visual contrast thresholds of the goldfish (Carassius auratus). Vision Research 8, 13151335.CrossRefGoogle ScholarPubMed
Johns, P.R. (1977). Growth of the adult goldfish eye. III. Source of the new retinal cells. Journal of Comparative Neurology 176, 343358.CrossRefGoogle ScholarPubMed
Johns, P.R. (1982). The formation of photoreceptors in the growing retinas of larval and adult goldfish. Journal of Neuroscience 2, 178198.CrossRefGoogle Scholar
Johns, P.R. & Easter, S.S. Jr. (1977). Growth of the adult goldfish eye. II. Increase in retinal cell number. Journal of Comparative Neurology 176, 331342.CrossRefGoogle ScholarPubMed
Johns, P.R. & Fernald, R.D. (1981). Genesis of rods in teleost fish retina. Nature 293, 141142.CrossRefGoogle ScholarPubMed
Kock, J.-H. (1982). Neuronal addition and retinal expansion during growth of the crucian carp eye. Journal of Comparative Neurology 209, 275286.CrossRefGoogle ScholarPubMed
Kunz, Y.W. & Callaghan, E. (1989). Embryonic fissures in teleost eyes and their possible role in the detection of polarized light. Transactions of the American Fisheries Society 118, 195202.2.3.CO;2>CrossRefGoogle Scholar
Lyall, A.H. (1957). The growth of the trout retina. Quarterly Journal of Microscopical Sciences 98, 101110.Google Scholar
Meyer, R.L. (1978). Evidence from thymidine labelling for continuing growth of retina and tectum in juvenile goldfish. Experimental Neurology 59, 99111.CrossRefGoogle ScholarPubMed
Müller, H. (1952). Bau und Wachstum der Netzhaut des Guppy (Lebistes reticulatus). Zoologische Jahrbuecher (Zoologie und Physiologie) 63, 275324.Google Scholar
Neave, D.A. (1984). The development of visual acuity in larval plaice (Pleuronectes platessa L.) and turbot (Scophthalmus maximus L.). Journal of Experimental Marine Biology and Ecology 78, 167175.CrossRefGoogle Scholar
Northmore, D.P.M. & Dvorak, C.A. (1977). Contrast sensitivity and acuity of the goldfish. Vision Research 19, 255261.CrossRefGoogle Scholar
Page, L.M. & Burr, B.M. (1991). A Field Guide to Freshwater Fishes. Boston, Massachusetts: Houghton Mifflin Company.Google Scholar
Powers, M.K., Bassi, C.J., Rone, L.A. & Raymond, P.A. (1988). Visual detection by the rod system in goldfish of different sizes. Vision Research 28, 211221.CrossRefGoogle ScholarPubMed
Powers, M.K. & Easter, S.S. Jr. (1983). Behavioral significance of retinal structure and function in fishes. In Fish Neurobiology, ed. Northcutt, R.G. & Davis, R.E., pp. 377404. Ann Arbor, Michigan: University of Michigan Press.Google Scholar
Powers, M.K. & Raymond, P.A. (1990). Development of the visual system. In The Visual System of Fish, ed. Douglas, R.H. & Djamgoz, M.B.A., pp. 419442. London: Chapman & Hall.CrossRefGoogle Scholar
Rahmann, H., Jeserich, G. & Zeutzius, I. (1979). Ontogeny of visual acuity of rainbow trout under normal conditions and light deprivation. Behaviour 68, 315322.CrossRefGoogle ScholarPubMed
Raymond, P.A. (1985). The unique origin of rod photoreceptors in the teleost retina. Trends in Neurosciences 8, 1217.CrossRefGoogle Scholar
Raymond, P.A. & Rivlin, P.K. (1987). Germinal cells in the goldfish retina that produce rod photoreceptors. Developmental Biology 122, 120138.CrossRefGoogle ScholarPubMed
Raymond, P.A., Reifler, M.J. & Rivlin, P.K. (1988). Regeneration of goldfish retina: Rod precursors are a likely source of regenerated cells. Journal of Neurobiology 19, 431463.CrossRefGoogle ScholarPubMed
Sandy, J.M. & Blaxter, J.H.S. (1980). A study of retinal development in larval herring and sole. Journal of the Marine Biology Association of the United Kingdom 60, 5971.CrossRefGoogle Scholar
Scott, W.B. & Crossman, E.J. (1973). Freshwater Fishes of Canada, Bulletin 184. Ottawa: Fisheries Research Board of Canada.Google Scholar
Sidman, R.L. (1961). Histogenesis of mouse retina studied with thymidine-H3. In The Structure of the Eye, ed. Smelser, G.K., pp. 487505. New York: Academic Press.Google Scholar
Wahl, C.M., Mills, E.L., McFarland, W.N. & DeGisi, J.S. (1993). Ontogenetic changes in prey selection and visual acuity of the yellow perch, Perca flavescens. Canadian Journal of Fisheries and Aquatic Sciences 50, 743749.CrossRefGoogle Scholar
Walls, G.L. (1942). The Vertebrate Eye and its Adaptive Radiation. New York: Hafner.Google Scholar
Yamanouchi, T. (1956). The visual acuity of the coral fish Microcanthus strigatus. Publications of the Seto Marine Biological Laboratory V, 133156.CrossRefGoogle Scholar