Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-04T21:16:08.224Z Has data issue: false hasContentIssue false

Amplitude of the transient visual evoked potential (tVEP) as a function of achromatic and chromatic contrast: Contribution of different visual pathways

Published online by Cambridge University Press:  06 March 2008

GIVAGO S. SOUZA*
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
BRUNO D. GOMES
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
ELIZA MARIA C.B. LACERDA
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
CÉZAR A. SAITO
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
MANOEL DA SILVA FILHO
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
LUIZ CARLOS L. SILVEIRA
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil Núcleo de Medicina Tropical, Universidade Federal do Pará, Brazil
*
Address correspondence and reprint requests to: Givago da Silva Souza, Universidade Federal do Pará, Núcleo de Medicina Tropical, Av. Generalíssimo Deodoro 92, 66055-240 Belém-Pará, Brazil. E-mail: [email protected]

Abstract

We investigated how the stimulation mode influences transient visual evoked potentials (tVEP) amplitude as a function of contrast of achromatic and isoluminant chromatic gratings. The chromatic stimulation probed only responses to the red-green axis. Visual stimuli were monocularly presented in a 5° diameter circle, achromatic and chromatic horizontal gratings, 1 Hz pattern reversal stimulation, and achromatic and chromatic gratings, 300 ms onset per 700 ms offset stimulation. For the achromatic pattern reversal stimulation, a double slope function describes how the P100 amplitude varied as a function of log contrast which had a limb at low-to-medium contrasts and another limb at high contrasts. For the achromatic onset/offset stimulation, C2 amplitude saturated at the highest contrast tested and a single straight line described how it changed along most of the contrast range. Both presentation modes for chromatic gratings resulted in amplitude versus log contrast relations which were well described by single straight lines along most of the contrast range. The results may be interpreted as if at 2 cpd, achromatic pattern reversal stimulation evoked the activity of at least two visual pathways with high and low contrast sensitivity, respectively, while achromatic onset/offset stimulation favored the activity of a pathway with high contrast sensitivity. The neural activity in the M pathway is the best candidate to be the high contrast mechanism detected with pattern reversal and pattern onset/offset VEPs. The activity of color opponent pathways such as the P and K pathways either combined or in isolation seems to be responsible for VEPs obtained with isoluminant chromatic gratings at both presentation modes. When the amplitudes of chromatic VEPs were plotted in the same contrast scale as used for achromatic VEPs, chromatic contrast thresholds had similar values to those of the achromatic mechanism with high contrast sensitivity.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bobak, P., Bodis-Wollner, I., Harnois, C. & Thornton, J. (1984). VEPs in humans reveal high and low spatial contrast mechanisms. Investigative Ophthalmology and Visual Science 25, 980983.Google ScholarPubMed
Brainard, D.H. (1996). Cone contrast and opponent modulation color spaces. In Human Color Vision, ed. Kaiser, P.K. & Boynton, R.M., pp. 563579. Washington, DC: Optical Society of America.Google Scholar
Campbell, F.W. & Kulikowski, J.J. (1971). An electrophysiological measure of the psychophysical contrast threshold. Journal of Physiology (London) 217, 5455.Google ScholarPubMed
Campbell, F.W. & Kulikowski, J.J. (1972). The visual evoked potential as a function of contrast of a grating pattern. Journal of Physiology (London) 197, 551556.CrossRefGoogle Scholar
Campbell, F.W. & Maffei, L. (1970). Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology (London) 207, 635652.CrossRefGoogle ScholarPubMed
Carden, D., Kulikowski, J.J., Murray, I.J. & Parry, N.R.A. (1985). Human occipital potentials evoked by onset of equiluminant chromatic gratings. Journal of Physiology (London) 369, 44.Google Scholar
Chatterjee, S. & Callaway, E.M. (2004). Parallel colour-opponent pathways to primary visual cortex. Nature (London) 426, 668671.CrossRefGoogle Scholar
Dacey, D.M. & Lee, B.B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Journal of Physiology (London) 367, 731735.CrossRefGoogle ScholarPubMed
Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. (2003). Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 1527.CrossRefGoogle ScholarPubMed
Estévez, O. & Spekreijse, H. (1974). Relationship between pattern appearance-disappearance and pattern reversal responses. Experimental Brain Research 19, 233238.CrossRefGoogle ScholarPubMed
Gerth, C., Delahunt, P.B., Crognale, M.A. & Werner, J.S. (2003). Topography of the chromatic pattern-onset VEP. Journal of Vision 3, 171182.CrossRefGoogle ScholarPubMed
Gomes, B.D., Souza, G.S., Rodrigues, A.R., Saito, C.A., Silveira, L.C.L. & da Silva Filho, M. (2006). Normal and dichromatic colour discrimination measured with transient visual evoked potential. Visual Neuroscience 23, 617627.CrossRefGoogle ScholarPubMed
Hendry, S.H.C. & Yoshioka, T. (1994). A neurochemically distinct third channel in macaque dorsal lateral geniculate nucleus. Science 264, 575577.CrossRefGoogle ScholarPubMed
Heywood, C.A., Silveira, L.C.L. & Cowey, A. (1988). Contrast sensitivity in rats with increased or decreased numbers of retinal ganglion cells. Experimental Brain Research 70, 513526.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and the architecture of monkey striate cortex. Journal of Physiology (London) 195, 215243.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Deegan, J.F. II, Neitz, J., Crognale, M.A. & Neitz, M. (1993). Photopigments and colour vision in the nocturnal monkey. Aotus. Vision Research 33, 17731783.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Neitz, M. & Neitz, J. (1996). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London B 263, 705710.Google ScholarPubMed
Jeffreys, D.A. (1977). The physiological significance of pattern visual evoked potentials. In Visual Evoked Potentials in Man, ed. Desmedt, J.E., pp. 134167. Oxford: Claredon Press.Google Scholar
Judd, D.B. (1951). Report of U.S. secretariat committee on colorimetry and artificial daylight. In Proceedings of the Twelfth Session of the CIE, Stockholm, vol. 1, p. 11. Paris, France: Bureau Central de la CIE.Google Scholar
Kaplan, E. & Shapley, R.M. (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology (London) 330, 125143.CrossRefGoogle ScholarPubMed
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the USA 83, 27552757.CrossRefGoogle ScholarPubMed
Kilavik, B.E., Silveira, L.C.L. & Kremers, J. (2007). Spatial receptive field properties of lateral geniculate cells in the owl monkey (Aotus azarae) at different contrasts: A comparative study. European Journal of Neuroscience 26, 9921006.CrossRefGoogle ScholarPubMed
Kremers, J., Silveira, L.C. & Kilavik, B.E. (2001). Influence of contrast on the responses of marmoset lateral geniculate cells to drifting gratings. Journal of Neurophysiology 85, 235246.CrossRefGoogle ScholarPubMed
Kulikowski, J.J., Murray, I.J. & Parry, N.R. (1989). Electrophysiological correlates of chromatic-opponent and achromatic stimulation in man. In Colour Vision deficiencies IX, ed. Drum, B. & Verriest, E., pp. 145153. Dordrecht, The Netherlands: Kluwer Academic Publishers.CrossRefGoogle Scholar
Kulikowski, J.J., Robson, A.G. & McKeefry, D.J. (1996). Specificity and selectivity of chromatic visual evoked potentials. Vision Research 36, 33973401.CrossRefGoogle ScholarPubMed
Lee, B.B., Martin, P.R. & Valberg, A. (1989). Sensitivity of macaque retinal ganglion cell to chromatic and luminance flicker. Journal of Physiology (London) 414, 223243.CrossRefGoogle ScholarPubMed
Lee, B.B., Silveira, L.C.L., Yamada, E.S., Hunt, D.M., Kremers, J., Martin, P.R., Troy, J.B. & da Silva Filho, M. (2000). Visual responses of ganglion cells of a New World primate, the capuchin monkey, Cebus apella. Journal of Physiology (London) 528.3, 573590.CrossRefGoogle Scholar
Marshall, C. & Harden, C. (1952). Use of rhythmically varying patterns for photic stimulation. Electroencephalography and Clinical Neurophysiology 4, 283287.CrossRefGoogle ScholarPubMed
Murray, I.J., Parry, N.R.A., Carden, D. & Kulikowski, J.J. (1987). Human visual evoked potentials to chromatic and achromatic gratings. Clinical and Vision Sciences 1, 231244.Google Scholar
Nakayama, K. & Mackeben, M. (1982). Steady state visual evoked potentials in the alert primate. Vision Research 22, 12611271.CrossRefGoogle ScholarPubMed
Odom, J.V., Bach, M., Barber, C., Brigell, M., Marmor, M.F., Tormene, A.P., Holder, G.E. & Vaegan. (2004). Visual evoked potentials standard (2004). Documenta Ophthalmologica 108, 115123.CrossRefGoogle ScholarPubMed
Parker, D.M., Salzen, E.A. & Lishman, J.R. (1982). Visual-evoked responses elicited by the onset and offset of sinusoidal gratings: Latency, waveform, and topographic characteristics. Investigative Ophthalmology and Visual Science 22, 675680.Google ScholarPubMed
Plant, G.T. (1983). Transient visually evoked potentials to sinusoidal gratings in optic neuritis. Journal of Neurology, Neurosurgery and Psychiatry 46, 11251133.CrossRefGoogle ScholarPubMed
Plant, G.T., Zimmern, R.L. & Durden, K. (1983). Transient visually evoked potentials to the pattern reversal and onset of sinusoidal gratings. Electroencephalography and Clinical Neurophysiology 56, 147158.CrossRefGoogle Scholar
Porciatti, V. & Sartucci, F. (1999). Normative data for onset VEPs to red-green and blue-yellow chromatic contrast. Clinical Neurophysiology 110, 772781.CrossRefGoogle ScholarPubMed
Regan, D. & Spekreijse, H. (1974). Evoked potential indications of colour blindness. Vision Research 14, 8996.CrossRefGoogle ScholarPubMed
Rudvin, I., Valberg, A. & Kilavik, B.E. (2000). Visual evoked potentials and magnocellular and parvocellular segregation. Visual Neuroscience 17, 579590.CrossRefGoogle ScholarPubMed
Silveira, L.C.L. (1996). Joint entropy loci of M and P cells: A hypothesis for parallel processing in the primate visual system. Revista Brasileira de Biologia 56, 345367.Google Scholar
Silveira, L.C.L., Grünert, U., Kremers, J., Lee, B.B. & Martin, P.R. (2005). Comparative anatomy and physiology of the primate retina. In The Primate Visual System: A Comparative Approach, ed. Kremers, J., pp. 127160. Chichester, England: John Wiley & Sons.CrossRefGoogle Scholar
Silveira, L.C.L., Heywood, C.A. & Cowey, A. (1987). Contrast sensitivity and visual acuity of the pigmented rat determined electrophysiologically. Vision Research 27, 17191731.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Heywood, C.A. & Cowey, A. (1989). Direct and transcallosal contribution to the visual evoked response in the pigmented rat. Behavioural Brain Research 31, 291294.CrossRefGoogle Scholar
Silveira, L.C.L., Picanço-Diniz, C.W. & Oswaldo-Cruz, E. (1982). Contrast sensitivity function and visual acuity of opossum. Vision Research 22, 13711377.CrossRefGoogle ScholarPubMed
Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15, 161171.CrossRefGoogle Scholar
Souza, G.S., Gomes, B.D., Saito, C.A., da Silva Filho, M. & Silveira, L.C.L. (2007). Spatial luminance contrast sensitivity measured with transient VEP: Comparison with psychophysics and evidence for multiple mechanisms. Investigative Ophthalmology and Visual Science 48, 33963404.CrossRefGoogle ScholarPubMed
Spekreijse, H. & Estévez, O. (1972). The pattern appearance-disappearance response. Trace 6, 1319.Google Scholar
Spekreijse, H., Van der Tweel, L.H. & Zuidema, T.H. (1973). Contrast evoked response in man. Vision Research 13, 15771601.CrossRefGoogle ScholarPubMed
Suttle, C.M. & Harding, G.F.A. (1999). Morphology of transient VEPs to luminance and chromatic pattern onset and offset. Vision Research 39, 15771584.CrossRefGoogle ScholarPubMed
Valberg, A. & Rudvin, I. (1997). Possible contributions of magnocellular- and parvocellular-pathway cells to transient VEPs. Visual Neuroscience 14, 111.CrossRefGoogle ScholarPubMed
Vos, J.J. (1978). Colorimetric and photometric properties of a 2-deg fundamental observer. Color Research and Application 3, 125128.CrossRefGoogle Scholar
White, A.J.R., Goodchild, A.K., Wilder, H.D., Sefton, A.E. & Martin, P.R. (1998). Segregation of receptive field properties in the lateral geniculate nucleus of a New-World monkey, the marmoset Callithrix jacchus. Journal of Neurophysiology 80, 20632076.CrossRefGoogle ScholarPubMed
Wikler, K.C. & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. Journal of Neuroscience 10, 33903401.CrossRefGoogle ScholarPubMed
Xu, X., Ichida, J.M., Allison, J.D., Boyd, J.D., Bonds, A.B. & Casagrande, V.A. (2001). A comparison of koniocellular, magnocellular and parvocellular receptive field properties in the lateral geniculate nucleus of the owl monkey (Aotus trivirgatus). Journal of Physiology (London) 531.1, 203218CrossRefGoogle Scholar
Zemon, V. & Gordon, J. (2006). Luminance-contrast mechanisms in humans: Visual evoked potentials and a nonlinear model. Vision Research 46, 41634180.CrossRefGoogle Scholar