Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T04:58:58.718Z Has data issue: false hasContentIssue false

Amplitude and phase variations of harmonic components in human achromatic and chromatic visual evoked potentials

Published online by Cambridge University Press:  02 June 2009

D. J. McKeefry
Affiliation:
Visual Sciences Laboratory, Department of Optometry and Vision Sciences, UMIST, P.O.Box 88, Manchester, M60 1QD, UK
M. H. A. Russell
Affiliation:
Visual Sciences Laboratory, Department of Optometry and Vision Sciences, UMIST, P.O.Box 88, Manchester, M60 1QD, UK
I. J. Murray
Affiliation:
Visual Sciences Laboratory, Department of Optometry and Vision Sciences, UMIST, P.O.Box 88, Manchester, M60 1QD, UK
J. J. Kulikowski
Affiliation:
Visual Sciences Laboratory, Department of Optometry and Vision Sciences, UMIST, P.O.Box 88, Manchester, M60 1QD, UK

Abstract

Occipital visual evoked potentials (VEPs) were recorded in response to low-contrast, low spatial-frequency chromatic, and achromatic gratings. Fast Fourier Transform (FFT) and time-domain analysis were used to reveal differences in harmonic content and amplitude of chromatic and achromatic response components over a wide range of temporal frequencies. The chromatic ON/OFF VHP is dominated by the fundamental component indicating that onset and offset responses are different. This type of response is typical of neurons with sustained type response characteristics. Conversely, the achromatic onset VEP contains a predominant second harmonic component in addition to the fundamental. This similarity between onset and offset responses suggests that transient mechanisms are responsible for the generation of achromatic components. Frequency analysis of VEPs elicited by phase-reversing stimuli reveals that all of the response energy is concentrated at the second harmonic of the stimulating frequency. The magnitude of the second harmonic component is maximal for achromatic stimuli and undergoes a distinct minimum for isoluminant, chromatic stimuli. This behavior indicates that under the stimulus conditions used, magnocellular neurons with transient characteristics dominate the reversal VEP.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berninger, T.A., Arden, G.B., Hogg, C.R. & Frumkes, T. (1989). Separable evoked retinal and cortical potentials from each major visual pathway: Preliminary results. British Journal of Ophthalmology 73, 502511.CrossRefGoogle ScholarPubMed
Blakemore, C. & Vital-Durand, F. (1986). Organisation and postnatal development of the monkey's lateral geniculate. Journal of Physiology 380, 453491.Google Scholar
Blasdel, G.G. & Lund, J.S. (1983). Termination of afferent axons in macaque striate cortex. Journal of Neuroscience 3, 13891413.Google Scholar
Brindley, G.S. (1972). The variability of the human striate cortex. Journal of Physiology 225, 13P.Google ScholarPubMed
Campbell, F.W. & Maffei, L. (1970). Electrophysiological evidence of the existence of orientation and size detectors. Journal of Physiology 207, 635652.Google Scholar
Carden, D., Kulikowski, J.J., Murray, I.J. & Parry, N.R.A. (1985). Human occipital potentials evoked by the onset of equiluminant chromatic gratings. Journal of Physiology 369, 44P.Google Scholar
Charman, W.N. (1991). Limits on visual performance set by the eye's optics and retinal cone mosaic. In Limits of Vision, ed. Kulikowski, J.J., Walsh, V. & Murray, I.J., pp. 8196. London, England: MacMillan.Google Scholar
Dacey, D.M. & Lee, B.B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.Google Scholar
De Monasterio, P.M. (1978). Properties of concentrically organised X and Y ganglion cells of the macaque retina. Journal of Neurophysiology 41, 13941417.CrossRefGoogle ScholarPubMed
De Monasterio, F.M. & Gouras, P. (1975). Functional properties of ganglion cells of the rhesus monkey retina. Journal of Physiology 251, 167195.Google Scholar
Dreher, B., Fukada, Y. & Rodieck, R.W. (1976). Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the LGN of old world primates. Journal of Physiology 258, 433453.Google Scholar
Fiorentini, A., Burr, D.C. & Morrone, C.M. (1991). Temporal characteristics of colour vision: VEP and psychophysical measurements. In From Pigments to Perception: Advances in Understanding Visual Processes, ed. Valberg, A. & Lee, B.B., pp. 139150. New York: Plenum Press.CrossRefGoogle Scholar
Fitzpatrick, D., Lund, J.S. & Blasdel, G.G. (1985). Intrinsic connection of the macaque striate cortex: Afferent and efferent connections of lamina 4C. Journal of Neuroscience 5, 33293349.Google Scholar
Gegenfurtner, K.R., Kiper, D.C. & Fenstermaker, S.B. (1994). Processing of colour information in area V2 of the macaque. Perception (Suppl.) 23, 3031.Google Scholar
Givre, S.J., Schroeder, C.E. & Arezzo, J.C. (1994). Contribution of extrastriate area V4 to the surface recorded flash VEP in the awake macaque. Vision Research 34, 415438.Google Scholar
Gouras, P. (1968). Identification of cone mechanisms in the monkey ganglion cells. Journal of Physiology 199, 533547.Google Scholar
Grose-Fifer, J., Zemon, V. & Gordon, J. (1994). Temporal tuning and the development of lateral interactions in the human visual system. Investigative Ophthalmology and Visual Science 35, 29993010.Google ScholarPubMed
Hendrickson, A.E., Wilson, J.R. & Ogren, M.P. (1978). The neuroanatomical organisation of pathways between dorsal LGN and visual cortex in Old and New World primates. Journal of Comparative Neurology 182, 123136.Google Scholar
Hicks, T.P., Lee, B.B. & Vidyasagar, T.R. (1983). The responses of cells in the macaque lateral geniculate nucleus to sinusoidal gratings. Journal of Physiology 337, 183200.Google Scholar
Hubel, D.H. & Livingstone, M.S. (1990). Colour and contrast sensitivity in the lateral geniculate body and the primary visual cortex of the macaque monkey. Journal of Neuroscience 10, 22232237.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1972). Laminar and columnar distribution of geniculo-cortical fibres in the macaque monkey. Journal of Comparative Neurology 146, 421450.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1977). Functional architecture of the macaque visual cortex. Proceedings of the Royal Society B (London) 198, 159.Google Scholar
Kaplan, E. & Shapley, R.M. (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology 330, 125143.CrossRefGoogle ScholarPubMed
Kaplan, E., Lee, B.B. & Shapley, R.M. (1990). New views of primate retinal function. In Progress in Retinal Research, Vol. 9, ed. Os-Borne, D. & Chader, G., pp. 273336. Oxford: Pergamon Press.Google Scholar
Kelly, D.H. (1989). Spatial and temporal interactions in colour vision. Journal of Imaging Technology 15, 8289.Google Scholar
Kulikowski, J.J. (1974). Human averaged occipital potentials evoked by pattern and movement. Journal of Physiology 242, 7071P.Google Scholar
Kulikowski, J.J. (1976). Effective contrast constancy and linearity of contrast sensation. Vision Research 16, 14191431.Google Scholar
Kulikowski, J.J. (1977). Separation of occipital potentials related to the detection of pattern and movement. In Visual Evoked Potentials in Man: New Developments, ed. Desmedt, J.E., pp. 197208. Oxford: Clarendon Press.Google Scholar
Kulikowski, J.J. (1978). Pattern and movement detection in man and rabbit: Separation and comparison of occipital potentials. Vision Research 18, 183189.Google Scholar
Kulikowski, J.J. (1991). On the nature of VEP's, unit responses and psychophysics. In From Pigments to Perception: Advances in Understanding Visual Processes, ed. Valbero, A. & Lee, B.B., pp. 197209. New York: Plenum Press.Google Scholar
Kulikowski, J.J. & Tolhurst, D.J. (1973). Psychophysical evidence for sustained and transient detectors in human vision. Journal of Physiology 232, 149162.CrossRefGoogle ScholarPubMed
Kulikowski, J.J. & Vidyasagar, T.R. (1983). Single-unit, multi-unit and field potential responses in the striate cortex of macaque and cat as a function of contrast. Journal of Physiology 334, 1920P.Google Scholar
Kulikowski, J.J. & Vidyasagar, T.R. (1986). Space and Spatial frequency: Analysis and representation in the macaque striate cortex. Experimental Brain Research 64, 518.Google Scholar
Kulikowski, J.J. & Vidyasagar, T.R. (1987). Neuronal responses and field potentials evoked by gratings in the macaque striate cortex. Journal of Physiology 392, 45P.Google Scholar
Kulikowski, J.J. & Walsh, V. (1993). Colour vision: Isolating mechanisms in overlapping streams. Progress in Brain Research 95, 417426.CrossRefGoogle ScholarPubMed
Kulikowski, J.J., Murray, I.J. & Parry, N.R.A. (1989). Electrophysiological correlates of chromatic opponent and achromatic stimulation in man. In Colour Vision Deficiencies IX, ed. Drum, B. & Verriest, G., pp. 145153. Dordrecht: Kluwer Academic Publishers.Google Scholar
Kulikowski, J.J., Murray, I.J. & Russell, M.H.R. (1991). Effect of stimulus size on chromatic and achromatic VEPs. In Colour Vision Deficiencies X, ed. Drum, B., Moreland, J.D. & Serra, A., pp. 5156. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Lee, B.B. (1991). On the relation between cellular sensitivity and psychophysical detection. In From Pigments to Perception: Advances in Understanding Visual Processes, ed. Valberg, A. & Lee, B.B., pp. 105115. New York: Plenum Press.Google Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology 404, 323347.Google Scholar
Lund, J.S. (1988). Anatomical organisation of the macaque monkey striate visual cortex. Annual Review Neuroscience 11, 253288.CrossRefGoogle ScholarPubMed
McKeefry, D. J. & Kulikowski, J.J. (1995). Psychophysical and occipital responses to aberration-free blue/yellow and red/green gratings. In Colour Vision Deficiencies XII, ed., Drum, B., pp. 381388. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Merigan, W.H. (1991). P and M pathway specialisation in the macaque. In From Pigments to Perception: Advances in Understanding Visual Processes, ed. Valberg, A. & Lee, B.B., pp. 117125. New York: Plenum Press.Google Scholar
Merigan, W.H. & Maunsell, J.H.R. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369402.Google Scholar
Morrone, C., Burr, D.C. & Fiorentini, A. (1993). Development of infant contrast sensitivity to chromatic stimuli. Vision Research 33, 25352552.CrossRefGoogle ScholarPubMed
Murray, I.J. (1983). Frequency analysis of human transient visual evoked potential. Journal of Physiology 337, 2122PGoogle Scholar
Murray, I.J. & Kulikowski, J.J. (1984). Movement detection and spatial phase. Ophthalmic and Physiological Optics 4, 7376.Google Scholar
Murray, I.J., Parry, N.R.A., Carden, D. & Kulikowski, J.J. (1987). Human visual evoked potentials to chromatic and achromatic gratings. Clinical Vision Sciences 1, 231244.Google Scholar
Nealey, T.A. & Maunsell, J.H.R. (1994). Magnocellular and parvo-cellular contributions to the responses of neurons in the macaque striate cortex. Journal of Neuroscience 14, 20692079.Google Scholar
Parry, N.R.A., Kulikowski, J.J., Murray, I.J., Kranda, K. & Ott, H. (1988). Visual evoked potentials and reaction times to chromatic and achromatic stimulation: Psychopharmacological applications. In Psychopharmacology and Reaction Time, ed. Hindmarch, I., Aufdembrinke, B., Ott, H. & Valberg, A., pp. 155176. New York: John Wiley & Sons Ltd.Google Scholar
Previc, F.H. (1986). Visual evoked potentials to luminance and chromatic contrast in rhesus monkeys. Vision Research 26, 18971986.Google Scholar
Previc, F.H. (1988). The neurophysiological significance of the N1 and P1 components of the visual evoked potential. Clinical Vision Sciences 3, 195202.Google Scholar
Regan, D. (1970). Objective method of measuring the relative spectralluminosity curve in man. Journal of the Optical Society of America 60, 856859.Google Scholar
Regan, D. (1977). Fourier analysis of evoked potentials; some methods based on Fourier analysis. In Visual Evoked Potentials in Man: New Developments, ed. Desmedt, J.E., pp. 110117. Oxford: Clarendon Press.Google Scholar
Regan, D. (1989). Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields in Science and Medicine. Amsterdam: Elsevier.Google Scholar
Rodieck, R.W. (1991). Which cells code for colour? In From Pigments to Perception: Advances in Understanding Visual Processes, ed. Valberg, A. & Lee, B.B., pp. 8394. New York: Plenum Press.Google Scholar
Russell, M.H.A., Kulikowski, J.J. & Murray, I.J. (1987). Spatial frequency dependence of the human VHP. In Evoked Potentials III, ed. Barber, C. & Blum, T., pp. 281288. London/Boston: Butterworths.Google Scholar
Schiller, P.M. & Colby, C.L. (1983). The responses of single cells in the LGN of the rhesus monkey to colour and luminance contrast. Vision Research 23, 16311641.Google Scholar
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1990). Functions of the colour opponent and broad-band channels of the visual system. Nature 343, 6870.Google Scholar
Schroeder, C.E., Tenke, C.E., Givre, J.C., Arezzo, J.C. & Vaughan, H.G. (1991). Striate cortical contribution to the surface recorded pattern reversal VEP in the alert monkey. Vision Research 31, 11431157.CrossRefGoogle Scholar
Shapley, R. & Perry, V.H. (1986). Cat and monkey retinal ganglion cells and their visual functional roles. Trends in Neuroscience 9, 229235.Google Scholar
Stensaas, S.S., Eddington, K.D. & Dobelle, W.H. (1974). The topography and variability of the primary visual cortex in man. Journal of Neurosurgery 80, 747755.Google Scholar
Strassburger, H., Murray, I.J. & Remky, A. (1992). Sustained and transient mechanisms in steady state visual evoked potentials: onset presentation compared to pattern reversal. Clinical Vision Sciences 8, 211234Google Scholar
Tootell, R.B.H., Silverman, M.S., Hamilton, S.L., DeValois, R.L. & Switkes, E. (1988). Functional anatomy of the macaque striate cortex. IV Contrast and magno-parvo streams. Journal of Neuroscience 8, 15941609.CrossRefGoogle ScholarPubMed
Zemon, V. & Ratliff, F. (1982). Visual evoked potentials: Evidence for lateral interactions. Proceedings of the National Academy of Sciences of the U.S.A. 79, 57235726.Google Scholar
Zemon, V. & Ratliff, F. (1984). Intermediation components of the visual evoked potential: Responses to lateral and superimposed stimuli. Biological Cybernetics 50, 401408.Google Scholar