Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T03:44:26.828Z Has data issue: false hasContentIssue false

Visuomotor properties of corticotectal cells in area 17 and posteromedial lateral suprasylvian (PMLS) cortex of the cat

Published online by Cambridge University Press:  10 April 2001

THEODORE G. WEYAND
Affiliation:
Department of Cell Biology and Anatomy, LSU Medical Center, New Orleans
ADELE C. GAFKA
Affiliation:
Department of Cell Biology and Anatomy, LSU Medical Center, New Orleans

Abstract

We studied the visuomotor activity of corticotectal (CT) cells in two visual cortical areas [area 17 and the posteromedial lateral suprasylvian cortex (PMLS)] of the cat. The cats were trained in simple oculomotor tasks, and head position was fixed. Most CT cells in both cortical areas gave a vigorous discharge to a small stimulus used to control gaze when it fell within the retinotopically defined visual field. However, the vigor of the visual response did not predict latency to initiate a saccade, saccade velocity, amplitude, or even if a saccade would be made, minimizing any potential role these cells might have in premotor or attentional processes. Most CT cells in both areas were selective for direction of stimulus motion, and cells in PMLS showed a direction preference favoring motion away from points of central gaze. CT cells did not discharge with eye movements in the dark. During eye movements in the light, many CT cells in area 17 increased their activity. In contrast, cells in PMLS, including CT cells, were generally unresponsive during saccades. Paradoxically, cells in PMLS responded vigorously to stimuli moving at saccadic velocities, indicating that the oculomotor system suppresses visual activity elicited by moving the retina across an illuminated scene. Nearly all CT cells showed oscillatory activity in the frequency range of 20–90 Hz, especially in response to visual stimuli. However, this activity was capricious; strong oscillations in one trial could disappear in the next despite identical stimulus conditions. Although the CT cells in both of these regions share many characteristics, the direction anisotropy and the suppression of activity during eye movements which characterize the neurons in PMLS suggests that these two areas have different roles in facilitating perceptual/motor processes at the level of the superior colliculus.

Type
Research Article
Copyright
2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)