Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T01:35:50.716Z Has data issue: false hasContentIssue false

Spectral sensitivity of the electroretinogram b-wave in dark-adapted goldfish

Published online by Cambridge University Press:  02 June 2009

Jonathan D. Nussdorf
Affiliation:
Department of Psychology, Vanderbilt University, Nashville
Maureen K. Powers
Affiliation:
Department of Psychology, Vanderbilt University, Nashville

Abstract

The action spectrum of the ERG b-wave was measured under dark-adapted conditions in intact goldfish (Carassius auratus). It is substantially broader than the absorption spectrum of goldfish rod porphyropsin. Neither prolonged dark adaptation nor removal of possible efferent neural activity affected its shape. Moreover, a 682-nm background did not produce a selective loss of sensitivity to long wavelengths. The results imply that the spectral sensitivity of the b-wave in dark-adapted goldfish reflects the influence of at least two photoreceptor types which act as a single univariant mechanism near absolute threshold.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afanador, A.J. & Adams, A.J. (1971). Ganglion cell receptive field organization at different levels of light adaptation. American Journal of Optometry 48, 889896.Google Scholar
Bassi, C.J. & Powers, M.K. (1987). Circadian rhythm in goldfish visual sensitivity. Investigative Ophthalmology & Visual Science 28, 18111815.Google ScholarPubMed
Bassi, C.J., Williams, R.C. Jr. & Powers, M.K. (1984). Light transmittance by goldfish eyes of different sizes. Vision Research 24, 14151419.CrossRefGoogle ScholarPubMed
Baylor, D.A., Fuortes, G.F. & O'Bryan, P.M. (1971). Receptive fields of cones in the retina of the turtle. Journal of Physiology 214, 165294.CrossRefGoogle ScholarPubMed
Beachamp, R.D. & Daw, N.W. (1972). Rod and cone input to single goldfish optic nerve fibers. Vision Research 12, 12021212.Google Scholar
Burkhardt, D.A. (1966). The goldfish electroretinogram: relation between photopic spectral sensitivity functions and cone absorption spectra. Vision Research 6, 517532.CrossRefGoogle ScholarPubMed
Copenhagen, P.R. & Owen, W.G. (1976). Functional characteristics of lateral interactions between rods in the retina of the snapping turtle. Journal of Physiology 259, 251282.CrossRefGoogle ScholarPubMed
Cohen, A. (1965). Some EM observations on inter-receptor contacts in the human and macaque retina. Journal of Anatomy 99, 595610.Google Scholar
Dawis, S.M. (1981). Polynomial expressions of pigment nomograms. Vision Research 21, 14271430.CrossRefGoogle ScholarPubMed
Easter, S.S. & Hamasaki, D.I. (1973). Electroretinographically-determined scotopic spectral sensitivities of some marine fish. Vision Research 13, 11751181.CrossRefGoogle ScholarPubMed
Ebbesson, S.O.E. & Meyer, D.G. (1981). Efferents to the retina have multiple sources in teleost fish. Science 214, 924926.CrossRefGoogle Scholar
Ebrey, T.G. & Hoenig, B. (1977). New wavelength dependent visual pigment nomograms. Vision Research 17, 147151.CrossRefGoogle ScholarPubMed
Fain, G.L. (1975). Quantum sensitivity of rods in the toad retina. Science 187, 838841.CrossRefGoogle ScholarPubMed
Falzett, M., Nussdorf, J.D. & Powers, M.K. (1988). Responsivity and absolute sensitivity of retinal ganglion cells in goldfish of different sizes, when measured under “psychophysical” conditions. Vision Research 28, 223237.CrossRefGoogle ScholarPubMed
Fulton, A.B. & Rushton, W.A.H. (1978). The human rod ERG: correlation with psychophysical responses in light and dark adaptation. Vision Research 18, 793800.CrossRefGoogle ScholarPubMed
Gerwerzhagen, K., Rickmann, M.J., Meyer, D.L. & Ebbesson, S.O.E. (1982). Pantodon buchholzi. Cell Tissue Research 225, 2328.CrossRefGoogle ScholarPubMed
Green, D.G. (1973). Scotopic and photopic components of the rat electroretinogram. Journal of Physiology 228, 781797.CrossRefGoogle Scholar
Ishida, A.T., Stell, W.K. & Lightfoot, D.O. (1980). Rod and cone inputs to bipolar cells in goldfish retina. Journal of Comparative Neurology 191, 315335.CrossRefGoogle ScholarPubMed
Kirk, R.E. (1982). Experimental Design: Procedures for the Behavioral Sciences 2nd edition, pp. 119120. Belmont, California: Brooks-Cole Publishing Company.Google Scholar
Naka, K.I. & Rushton, W.A.H. (1966). An attempt to analyze color reception by electrophysiology. Journal of Physiology 185, 556586.CrossRefGoogle ScholarPubMed
Nelson, R. (1977). Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172, 109136.CrossRefGoogle ScholarPubMed
Nussdorf, J.D., Falzett, M. & Powers, M.K. (1984). Differences between ON and OFF ganglion cells in dark-adapted goldfish retina. Society for Neuroscience Abstracts 10, 458.Google Scholar
Nussdorf, J.D. & Powers, M.K. (1987). The dark-adapted goldfish ERG: spectral sensitivity and Bloch's law. Investigative Ophthalmology and Visual Science 28 (Suppl.), 406.Google Scholar
Powers, M.K. & Easter, S.S. (1978 a). Absolute visual sensitivity of the goldfish. Vision Research 18, 11371147.CrossRefGoogle ScholarPubMed
Powers, M.K. & Easter, S.S. (1978 b). Wavelength discrimination by the goldfish near absolute visual threshold. Vision Research 18, 11491154.CrossRefGoogle ScholarPubMed
Raviola, E. (1976). Intercellular junctions in the outer plexiform layer of the retina. Investigative Ophthalmology 15, 881895.Google Scholar
Raviola, E. & Gilula, N.B. (1973). Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Science 70, 16771681.CrossRefGoogle ScholarPubMed
Raynauld, J.P. (1972). Goldfish retina: sign of the rod input in opponent color ganglion cells. Science 177, 8485.CrossRefGoogle ScholarPubMed
Raynauld, J.P., Laviolette, J.R. & Wagner, H.J. (1979). Goldfish retina: a correlate between cone activity and morphology of horizontal cell in cone pedicles. Science 204, 14361438.CrossRefGoogle Scholar
Schmidt, J.T., Cicerone, C.M. & Easter, S.S. (1978). Expansion of half retinal projection to the tectum in goldfish: an electrophysiological and anatomical study. Journal of Comparative Neurology 177, 257278.CrossRefGoogle Scholar
Scholes, J.H. (1975). Color receptors and their synaptic connexions in the retina of cyprinid fish. Philosophical Transactions of the Royal Society B (London) 270, 61118.Google ScholarPubMed
Scholes, J. & Morris, J. (1973). Receptor-bipolar connectivity patterns in fish retina. Nature 241, 5254.CrossRefGoogle ScholarPubMed
Schwanzara, S.A. (1967). The visual pigments of fresh water fishes. Vision Research 7, 121148.CrossRefGoogle Scholar
Schwartz, E.A. (1975). Cones excite rods in the retina of the turtle. Journal of Physiology 246, 639651.CrossRefGoogle ScholarPubMed
Seim, T., Valberg, A. & Olsen, B.T. (1979). Scotopic sensitivity and response: ERG recordings from the goldfish eye cup. Report 79–17, Institute of Physics, University of Oslo, Norway.Google Scholar
Sirovich, L. & Abramov, I. (1977). Photopigments and pseudo-pigments. Vision Research 17, 516.CrossRefGoogle ScholarPubMed
Stell, W.K. (1979). Photoreceptor-specific synaptic pathways in goldfish retina: a world of color, a wealth of connections. Fifth Symposium, International Research Group on Color Vision Deficiencies. London: Adam Hilger Ltd.Google Scholar
Stell, W.K., Ishida, A.T. & Lightfoot, D.O. (1977). Structural basis for ON- and OFF-center responses in retinal bipolar cells. Science 198, 12691271.CrossRefGoogle ScholarPubMed
Tsin, A.T.C. & Beatty, D.D. (1979). Scotopic visual pigment composition in the retinae and vitamin A in the pigment epithelium of the goldfish. Experimental Eye Research 29, 1526.CrossRefGoogle ScholarPubMed
Thorpe, S.A. (1973). The effects of temperature on the psychophysical and electroretinographic spectral sensitivity of the chromatically adapted goldfish. Vision Research 13, 5972.CrossRefGoogle ScholarPubMed
van den Berg, T.J.T.P. & Spekreuse, H. (1976). ERG photometry in goldfish by the criterion response method. Documenta Ophthalmologica Proceedings Ser. XIIth I. S. C. E.R. G. Symposium, pp. 183191.CrossRefGoogle Scholar
van den Berg, T.J.T.P. & Mooij, J.E.M. (1982). Eye media absorption in goldfish. Vision Research 22, 12291231.CrossRefGoogle ScholarPubMed
Wheeler, T.G. (1978). Goldfish Retina: dorsal versus ventral areas. Vision Research 18, 13291336.CrossRefGoogle ScholarPubMed
Witkovsky, P. (1968). The effect of chromatic adaptation on color sensitivity of the carp electroretinogram. Vision Research 8, 823837.CrossRefGoogle ScholarPubMed
Witkovsky, P. (1971). Synapses made by myelinated fibers running to teleost and elasmobranch retinas. Journal of Comparative Neurology 142, 205222.CrossRefGoogle ScholarPubMed
Witkovsky, P., Nelson, J. & Ripps, H. (1973). Action spectra and adaptation properties of carp photoreceptors. Journal of General Physiology 61, 401423.CrossRefGoogle ScholarPubMed
Witkovsky, P., Shakib, M. & Ripps, H. (1974). Interreceptoral junctions in the teleost retina. Investigative Ophthalmology 13, 9961009.Google ScholarPubMed
Wu, S.M. & Yang, X.-L. (1988). Electrical coupling between rods and cones in the tiger salamander retina. Proceedings of the National Academy of Sciences 85, 275278.CrossRefGoogle ScholarPubMed