Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-06T09:09:21.421Z Has data issue: false hasContentIssue false

Spectral sensitivity of macaque monkeys measured with ERG flicker photometry

Published online by Cambridge University Press:  02 June 2009

Gerald H. Jacobs
Affiliation:
Neuroscience Research Institute and Department of Psychology, University of California, Santa Barbara
Jess F. Deegan II
Affiliation:
Department of Psychology, California State University, Bakersfield

Abstract

Macaque monkeys are widely used as a model species for investigations of the biology of human vision. Previous measurements suggest that the cone-based spectral sensitivity of these two primates is greatly similar, but perhaps not identical. We measured the photopic spectral sensitivity of 42 male macaque monkeys from two species (Macaca mulatto, M. fascicularis) using an objective index, electroretinogram flicker photometry. The variations among individuals and between the two species were very small and there was no evidence for any significant cone pigment polymorphism in this sample. There are small but systematic differences in spectral sensitivity between macaque monkeys and equivalently tested human subjects–the monkeys were slightly more sensitive to short wavelengths (<520 nm) and slightly less sensitive to wavelengths longer than this value. The results obtained from the curve fitting of standard photopigment absorption spectra to the spectral-sensitivity functions suggest that the difference between human and macaque monkey spectral sensitivity principally reflects differences in the relative proportions of the long- and middle-wavelength cones in the retinas of the two species.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham, F A & Alpern, M. (1984). Factors influencing threshold of the fundamental electrical response to sinusoidal excitation of human photoreceptors. Journal of Physiology 357, 151172.CrossRefGoogle ScholarPubMed
Asenjo, A.B., Rim, J. & Oprian, D.D. (1994). Molecular determinants of human red/green color discrimination. Neuron 12, 11311138.CrossRefGoogle ScholarPubMed
Baylor, D.A., Nunn, B.J. & Schnapf, J.L. (1987). Spectral sensitivity of cones of the monkey Macaca fascicularis. Journal of Physiology 357, 145160.CrossRefGoogle Scholar
Behar, I. & Bock, P.D. (1974). Visual acuity as a function of wavelength in three catarrhine species. Folia Primatologica 21, 277289.CrossRefGoogle ScholarPubMed
Birch, D.G. (1989). Clinical electroretinography. Ophthalmology Clinics of North America 2, 469497.Google Scholar
Boettner, E.A. (1967). Spectral transmission of the eye. University of Michigan Contract AF41 (609)-2966. USAF School of Aerospace Medicine, Brooks Air Force Base, Texas.Google Scholar
Bowmaker, J.K. (1990). Cone visual pigments in monkeys and humans. In Advances in Photoreception, ed. Committee on Vision, pp. 1930. Washington, D.C.: National Academy Press.Google Scholar
Bush, R.A. & Sieving, P.A. (1996). Inner retinal contributions to the primate photopic fast flicker electroretinogram. Journal of the Optical Society of America A 13, 557565.CrossRefGoogle Scholar
Calkins, D.K., Schein, S.J., Tsukamoto, Y. & Sterling, P. (1994). M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature 371, 7072.CrossRefGoogle ScholarPubMed
Crawford, M.L.J. (1977). Central vision of man and macaque: Cone and rod sensitivity. Brain Research 119, 345356.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1996). Circuitry for color coding in the primate retina. Proceedings of the National Academy of Sciences of the U.S.A. 93, 582588.CrossRefGoogle ScholarPubMed
Dawis, S.M. (1981). Polynomial expressions of pigment nomograms. Vision Research 21, 14271430.CrossRefGoogle ScholarPubMed
Dawson, W.W., Trick, G.L. & Litzkow, C.A. (1979). Improved electrode for electroretinography. Investigative Ophthalmology and Visual Science 19, 988991.Google Scholar
Deeb, S.S., Jorgenson, A.L., Battisti, L., Iwasaki, L. & Motulsky, A.G. (1994). Sequence divergence of the red and green pigments in great apes and humans. Proceedings of the National Academy of Sciences of the U.S.A. 91, 72627266.CrossRefGoogle ScholarPubMed
De Valois, R.L., Morgan, H.C., Polson, M.C., Mead, W.R. & Hull, E.M. (1974). Psychophysical studies of monkey vision. I. Macaque luminosity and color vision tests. Vision Research 14, 5367.CrossRefGoogle ScholarPubMed
Dulai, K.S., Bowmaker, J.K., Mollon, J.D. & Hunt, D.M. (1994). Sequence divergence, polymorphism and evolution of middle-wave and long-wave visual pigment genes of great apes and old world monkeys. Vision Research 34, 24832491.CrossRefGoogle ScholarPubMed
Fleagle, J.G. (1988). Primate Adaptation & Evolution. San Diego, California: Academic Press.Google Scholar
Goodchild, A.K., Ghosh, K.K. & Martin, P.R. (1996). Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset Callithrix jacchus. Journal of Comparative Neurology 366, 5575.3.0.CO;2-J>CrossRefGoogle Scholar
Harwerth, R.S. & Smith, E.L. III (1985). The rhesus monkey as a model for normal vision of humans. American Journal of Optometry and Physiological Optics 62, 633641.CrossRefGoogle Scholar
Harwerth, R.S., Smith, E.L. III & DeSantis, L. (1993). Mechanisms mediating visual detection in static perimetry. Investigative Vision and Ophthalmology 34, 30113023.Google ScholarPubMed
Jacobs, G.H. (1990). Variations in color vision in non-human primates. In Inherited and Acquired Colour Vision Deficiencies: Fundamental Aspects and Clinical Studies, ed. Foster, D.H., pp.199214. London: Macmillan.Google Scholar
Jacobs, G.H. (1996). Primate photopigments and primate color vision. Proceedings of the National Academy of Sciences of the U.S.A. 93, 577581.CrossRefGoogle ScholarPubMed
Jacobs, G.H., Deegan, J.F. II & Moran, J.L. (1996 a). ERG measurements of spectral sensitivity of common chimpanzees (Pan troglodytes). Vision Research 36, 25872594.CrossRefGoogle Scholar
Jacobs, G.H., Neitz, J. & Krogh, K. (1996 b). Electroretinogram flicker photometry and its applications. Journal of the Optical Society of America A 13, 641648.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Harwerth, R.S. (1989). Color vision variations in Old and New World primates. American Journal of Primalology 18, 3544.CrossRefGoogle ScholarPubMed
Jacobs, G.H. & Neitz, J. (1987). Inheritance of color vision in a New World monkey (Saimiri sciureus). Proceedings of the National Academy of Sciences of the U.S.A. 84, 25452549.CrossRefGoogle Scholar
Jacobs, G.H. & Neitz, J. (1992). ERG flicker photometric evaluation of spectral sensitivity in protanopes and protanomalous trichromats. In Colour Vision Deficiencies XI, ed. Drum, B., pp.2531. Dordrecht: Kluwer.Google Scholar
Jacobs, G.H. & Neitz, J. (1993). Electrophysiological estimates of individual variation in the L/M cone ratio. In Colour Vision Deficiencies XI, ed. Drum, B., pp. 107112. Dordrecht: Kluwer.CrossRefGoogle Scholar
Kalmus, H. (1965). Diagnosis and Genetics of Defective Colour Vision. Oxford: Pergamon Press.Google Scholar
Kinnaman, A.J. (1902). Mental life of two Macacus rhesus monkeys in captivity. American Journal of Psychology 13, 98148.CrossRefGoogle Scholar
Kiorpes, L. (1992). Development of vernier acuity and grating acuity in normally reared monkeys. Visual Neuroscience 9, 243251.CrossRefGoogle ScholarPubMed
Lee, B.B. (1996). Receptive field structure in the primate retina. Vision Research 36, 631644.CrossRefGoogle ScholarPubMed
Lennie, P., Pokorny, J. & Smith, V.C. (1993). Luminance. Journal of the Optical Society of America A 10, 12831293.CrossRefGoogle ScholarPubMed
Merbs, S.L. & Nathans, J. (1992). Absorption spectra of human cone pigments. Nature 356, 433435.CrossRefGoogle ScholarPubMed
Mollon, J.D. & Bowmaker, J.K. (1992). The spatial arrangement of cones in the primate fovea. Nature 360, 677679.CrossRefGoogle ScholarPubMed
Nathans, J., Thomas, D. & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green and red pigments. Science 232, 193202.CrossRefGoogle ScholarPubMed
Neitz, J. & Jacobs, G.H. (1984). Electroretinogram measurements of cone spectral sensitivity in dichromatic monkeys. Journal of the Optical Society of America A 1, 11751180.CrossRefGoogle ScholarPubMed
Neitz, J., Neitz, M. & Jacobs, G.H. (1993). More than three different cone pigments among people with normal color vision. Vision Research 33, 117122.CrossRefGoogle ScholarPubMed
Packer, O.S., Williams, D.R. & Bensinger, D.G. (1996). Photopigment transmittance imaging of primate photoreceptor mosaic. Journal of Neuroscience 16, 22512260.CrossRefGoogle ScholarPubMed
Schnapf, J.L., Kraft, T.W. & Baylor, D.A. (1987). Spectral sensitivity of human cone photoreceptors Nature 325, 439441.$$$Google Scholar
Sereno, M.L., Dale, A.M., Reppas, J.B., Kwong, K.K., Belliveau, J.W., Brady, T.J., Rosen, B.R. & Tootell, R.B.H. (1995). Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268, 889893.CrossRefGoogle ScholarPubMed
Sidley, N.A. & Sperling, H.G. (1967). Photopic spectral sensitivity in the rhesus monkey. Journal of the Optical Society of America 57, 816818.CrossRefGoogle ScholarPubMed
Sidley, N.A., Sperling, H.G., Bedarf, E.W. & Hiss, R.H. (1965). Photopic spectral sensitivity in the rhesus monkey: Methods for determining and initial results. Science 150, 18371839.CrossRefGoogle Scholar
Snodderly, D.M., Auran, J.D. & Delori, F.C. (1984 a). The macular pigment. II. Spatial distribution in primate retinas. Investigative Ophthalmology and Visual Science 24, 674685.Google Scholar
Snodderly, D.M., Brown, P.K., Delori, F.C. & Auran, J.D. (1984 b). The macular pigment. I. Absorbance spectra, localization, and discrimination from other yellow pigments in primate retinas. Investigative Ophthalmology and Visual Science 25, 660673.Google ScholarPubMed
Winderickx, J., Lindsey, D.T., Sanocki, E., Teller, D.Y., Motulsky, A.G. & Deeb, S.S. (1992). Polymorphism in red photopigment underlies variation in colour matching. Nature 356, 431433.CrossRefGoogle ScholarPubMed
Zwick, H. & Robbins, D.O. (1978). Is the Rhesus protanomalous? Modern Problems of Ophthalmology 19, 238242.Google ScholarPubMed