Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T23:49:06.445Z Has data issue: false hasContentIssue false

Simulation of an anatomically defined local circuit: The cone-horizontal cell network in cat retina

Published online by Cambridge University Press:  02 June 2009

Robert G. Smith
Affiliation:
Department of Neuroscience, University of Pennsylvania, Philadelphia

Abstract

The outer plexiform layer of the retina contains a neural circuit in which cone synaptic terminals are electrically coupled and release glutamate onto wide-field and narrow-field horizontal cells. These are also electrically coupled and feed back through a GABAergic synapse to cones. In cat this circuit's structure is known in some detail, and much of the chemical architecture and neural responses are also known, yet there has been no attempt to synthesize this knowledge. We constructed a large-scale compartmental model (up to 50,000 compartments) to incorporate the known anatomical and biophysical facts. The goal was to discover how the various circuit components interact to form the cone receptive field, and thereby what possible function is implied. The simulation reproduced many features known from intracellular recordings: (1) linear response of cone and horizontal cell to intensity, (2) some aspects of temporal responses of cone and horizontal cell, (3) broad receptive field of the wide-field horizontal cell, and (4) center-surround cone receptive field (derived from a “deconvolution model"). With the network calibrated in this manner, we determined which of its features are necessary to give the cone receptive field a Gaussian center-surround shape. A Gaussian-like center that matches the center derived from the ganglion cell requires both optical blur and cone coupling: blur alone is too narrow, coupling alone gives an exponential shape without a central dome-shaped peak. A Gaussian-like surround requires both types of horizontal cell: the narrow-field type for the deep, proximal region and the wide-field type for the shallow, distal region. These results suggest that the function of the cone-horizontal cell circuit is to reduce the influence of noise by spatio-temporally filtering the cone signal before it passes through the first chemical synapse on the pathway to the brain.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atick, J.J. & Redlich, A.M. (1992). What does the retina know about natural scenes? Neural Computation 4, 196210.CrossRefGoogle Scholar
Attwell, D., Werblin, F.S., Wilson, M. & Wu, S. (1983). A sign-reversing pathway from rods to double and single cones in the retina of the tiger salamander. Journal of Physiology 336, 313333.CrossRefGoogle ScholarPubMed
Attwell, D., Wilson, M. & Wu, S.M. (1984). A quantitative analysis of interactions between photoreceptors in the salamander (Ambystoma) retina. Journal of Physiology 352, 703737.CrossRefGoogle ScholarPubMed
Attwell, D. (1986). Ion channels and signal processing in the outer retina. Quarterly Journal of Experimental Physiology 71, 497536.CrossRefGoogle ScholarPubMed
Attwell, D., Mobbs, P., Tessier-Lavigne, M. & Wilson, M. (1987). Neurotransmitter-induced currents in retinal bipolar cells of the axolotl, Ambystoma mexicanum. Journal of Physiology 387, 125161.CrossRefGoogle ScholarPubMed
Banks, M.S., Geisler, W.S. & Bennett, P.J. (1987). The physical limits of grating visibility. Vision Research 27, 19151924.CrossRefGoogle ScholarPubMed
Baylor, D.A., Fuortes, M.G.F. & O'Bryan, P.M. (1971). The receptive fields of cones in the retina of the turtle. Journal of Physiology 214, 265294.CrossRefGoogle ScholarPubMed
Belgum, J.H. & Copenhagen, D.R. (1988). Synaptic transfer of rod signals to horizontal and bipolar cells in the retina of the toad (Bufo Marinus). Journal of Physiology 396, 225245.CrossRefGoogle ScholarPubMed
Bloomfield, S.A. & Miller, R.F. (1982). A physiological and morphological study of the horizontal cell types of the rabbit retina. Journal of Comparative Neurology 208, 288303.CrossRefGoogle ScholarPubMed
Boycott, B.B., Peichl, L. & Wassle, H. (1978). Morphological types of horizontal cell in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 229245.Google ScholarPubMed
Burkhardt, D.W. (1993). Synaptic feedback, depolarization, and color opponency in cone photoreceptors. Visual Neuroscience 10, 981989.CrossRefGoogle ScholarPubMed
Chun, M.H. & Wassle, H. (1989). GABA-like immunoreactivity in the cat retina, electron microscopy. Journal of Comparative Neurology 279, 5567.CrossRefGoogle ScholarPubMed
Cleland, B.C., Harding, T.H. & Tuiunay-Keesey, U. (1979). Visual resolution and receptive-field size, examination of two kinds of cat retinal ganglion cell. Science 205, 10151017.CrossRefGoogle ScholarPubMed
Cohen, E.D. & Sterling, P. (1989). Microcircuitry related to the receptive-field center of the on-beta ganglion cell. Journal of Neuro-physiology 65, 352359.CrossRefGoogle Scholar
Cooley, J.W. & Dodge, F.A. (1966). Digital computer solutions for excitation and propagation of the nerve impulse. Biophysical Journal 6, 583599.CrossRefGoogle ScholarPubMed
Dacheux, R.A. & Raviola, E. (1982). Horizontal cells in the retina of the rabbit. Journal of Neuroscience 1, 14861493.CrossRefGoogle Scholar
Detwiler, P.B. & Hodgkin, A.L. (1979). Electrical coupling between cones in turtle retina. Journal of Physiology 291, 75100.CrossRefGoogle ScholarPubMed
Falk, G. & Fatt, P. (1972). Physical changes induced by light in the rod outer segment of vertebrates. In Handbook of Sensory Physiology, Vol. VII/I. Photochemistry of Vision, ed. Dartnall, H.J.A., pp. 200244. Berlin: Springer.Google Scholar
Fisher, S.K. & Boycott, B.B. (1974). Synaptic connections made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit. Proceedings of the Royal Society B (London) 186, 317331.Google Scholar
Foerster, M.H., Van De Grind, W.A. & Grusser, O.-J. (1977). Frequency transfer properties of three different types of cat horizontal cells. Experimental Brain Research 29, 347366.CrossRefGoogle Scholar
Freed, M.A. (1992). GABA-ergic circuits in mammalian retina. In Progress in Brain Research, GABA in the Retina and in the Central Nervous System, ed. Mize, R.R., Marc, R.E. & Sillito, A., pp. 107132, Amsterdam: Elsevier.Google Scholar
Frishman, L.J., Freeman, A.W., Troy, J.B., Schweitzer-Tong, D.E. & Enroth-Cugell, C.E. (1987). Spatio-temporal responses of cat retinal ganglion cells. Journal of General Physiology 89, 559628.Google Scholar
Hampson, E.C.G.M., Vaney, D.I. & Weiler, R. (1992). Regulation of gap-junction permeability between A-type horizontal cells in rabbit retina, effects of pH and dopamine. Investigative Ophthalmology and Visual Science 33, 1406.Google Scholar
Hines, M. (1984). Efficient computation of branched nerve equations. International Journal of Biomedical Computing 15, 6976.CrossRefGoogle ScholarPubMed
Hsu, A. & Smith, R.G. (1994). Simulating the foveal cone receptive field. In Computation and Neurons and Neural Systems, ed. Eeck-Man, F.H., pp. 7378. Boston, MA: Kluwer Academic Publishers.CrossRefGoogle Scholar
Hsu, A., Smith, R.G. & Sterling, , (1994). Functional architecture of Henle's layer in the fovea of M. Fascicularis (submitted).Google Scholar
Hughes, T.E., Grunert, U. & Karten, H.J. (1991). GABA-A receptors in the retina of the cat. An immunohistochemical study of whole-mounts, sections and dissociated cells. Visual Neuroscience 6, 229238.CrossRefGoogle Scholar
Kolb, H. (1970). Organization of the outer plexiform layer of the primate retina. Electron microscopy of Golgi-impregnated cells. Philosophical Transactions of the Royal Society B (London) 258, 261283.Google ScholarPubMed
Kolb, H. (1974). The connections between horizontal cells and photo-receptors in the retina of the cat, electron microscopy of Golgi preparations. Journal of Comparative Neurology 155, 114.CrossRefGoogle Scholar
Kolb, H. (1977). The organization of the outer plexiform layer in the retina of the cat, electron microscopic observations. Journal of Neurocytology 6, 131153.CrossRefGoogle ScholarPubMed
Kraft, T.W. & Burkhardt, D.A. (1986). Telodendrites of cone photo-receptors, structure and probable function. Journal of Comparative Neurology 249, 1327.CrossRefGoogle Scholar
Lamb, T.D. & Simon, E.J. (1976). The relation between intercellular coupling and electrical noise in turtle photoreceptors. Journal of Physiology 263, 257286.CrossRefGoogle ScholarPubMed
Lankheet, M.J.M., Frens, M.A. & Van De Grind, W.A. (1990). Spatial properties of horizontal cell responses in the cat retina. Vision Research 30, 12571275.CrossRefGoogle ScholarPubMed
Lankheet, M.J.M., Van Wezel, R.J.A. & Van De Grind, W.A. (1991). Effects of background illumination on cat horizontal cell responses. Vision Research 31, 919932.CrossRefGoogle ScholarPubMed
Lankheet, M.J.M., Przybyszewski, A.W. & Van De Grind, W.A. (1993). The lateral spread of light adaptation in cat horizontal cell responses. Vision Research 33, 11731184.CrossRefGoogle ScholarPubMed
Lasansky, A. (1971). Synaptic organization of cone cells in the turtle retina. Philosophical Transactions of the Royal Society B (London) 262, 365381.Google Scholar
Lasansky, A. (1973). Organization of the outer layer in the retina of the larval tiger salamander. Philosophical Transactions of the Royal Society B (London) 265, 471489.Google ScholarPubMed
Lasansky, A. (1981). Synaptic action mediating cone responses to annular illumination in the retina of the larval Tiger Salamander. Journal of Physiology (London) 310, 205214.CrossRefGoogle ScholarPubMed
Laughlin, S.B., Howard, J. & Blakeslee, B. (1987). Synaptic limitations to contrast coding in the retina of the blowfly Calliphora. Proceedings of the Royal Society B (London) 231, 437467.Google ScholarPubMed
Levitan, B. & Buchsbaum, G. (1993). Signal sampling and propagation through multiple cell layers in the retina, modeling and analysis with multirate filtering. Journal of the Optical Society of America 10, 14631480.CrossRefGoogle ScholarPubMed
Mangel, S.C. (1991). Analysis of the horizontal cell contribution to the receptive-field surround of ganglion cells in the rabbit retina. Journal of Physiology 442, 211234.CrossRefGoogle Scholar
Murakami, M., Shimoda, Y., Nakatani, K., Miyachi, E. & Watanabe, S. (1982). OABA-mediated negative feedback from horizontal cells to cones in carp retina. Japanese Journal of Physiology 32, 911926.Google ScholarPubMed
Nelson, R. (1977). Cat cones have rod input, a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172, 109136.CrossRefGoogle ScholarPubMed
Normann, R.A., Perlman, I., Kolb, H., Jones, J. & Daly, S.J. (1984). Direct excitatory interactions between cones of different spectral types in the turtle retina. Science 224, 625627.CrossRefGoogle ScholarPubMed
Peichl, L. & Gonzalez-Soriano, J. (1994). Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig. Visual Neuroscience 11, 501517.CrossRefGoogle ScholarPubMed
Pflug, R., Nelson, R. & Ahnhelt, P.K. (1990). Background-induced flicker enhancement in cat retinal horizontal cells. I. Temporal and spectral properties. Journal of Neurophysiology 64, 313325.CrossRefGoogle ScholarPubMed
Piccolino, M., Neyton, J. & Gershenfeld, H. (1981). Center-surround antagonistic organization in small-field luminosity horizontal cells of turtle retina. Journal of Neurophysiology 45, 363375.CrossRefGoogle ScholarPubMed
Pourcho, R. G., Owczarzak, M. T. (1989). Distribution of GABA immunoreactivity in the cat retina, a light- and electron-microscopic study. Visual Neuroscience 2, 425435.CrossRefGoogle ScholarPubMed
Raviola, E. & Gilula, N.B. (1975). Intramembrane organization of specialized contacts in the outer plexiform layer of the retina, a freeze-fracture study in monkeys and rabbits. Journal of Cell Biology 65, 192222.CrossRefGoogle ScholarPubMed
Robson, J.G. & Enroth-Cugell, C.E. (1978). Light distribution in the cat's retinal image. Vision Research 18, 159173.CrossRefGoogle ScholarPubMed
Sarthy, P.V. & Fu, M. (1989). Localization of L-glutamic acid decarboxylase mRNA in cat retina horizontal cells by in situ hybridization. Journal of Comparative Neurology 288, 593600.CrossRefGoogle ScholarPubMed
Schnapf, J.L., Nunn, B.J., Meister, M. & Baylor, D.A. (1990). Visual transduction in cones of the monkey, Macaco fascicularis. Journal of Physiology 427, 681713.CrossRefGoogle Scholar
Skrzypek, J. & Werblin, F. (1983). Lateral interactions in absence of feedback to cones. Journal of Neurophysiology 49, 10071016.CrossRefGoogle ScholarPubMed
Smith, R.G. (1992). NeuronC, a computational language for investigating functional architecture of neural circuits. Journal of Neuroscience Methods 43, 83108.CrossRefGoogle ScholarPubMed
Smith, R.G., Freed, M.A. & Sterling, P. (1986). Microcircuitry of the dark-adapted cat retina, functional architecture of the rod-cone network. Journal of Neuroscience 6, 35053517.CrossRefGoogle ScholarPubMed
Smith, R.G. & Sterling, P. (1990). Cone receptive field in cat retina computed from microcircuitry. Visual Neuroscience 5, 453461.CrossRefGoogle ScholarPubMed
Spruston, N. & Johnston, D. (1992). Perforated patch-clamp analysis of the passive membrane properties of three classes of hippo-campal neurons. Journal of Neurophysiology 67, 508529.CrossRefGoogle Scholar
Srinivasan, M.V., Laughlin, S.B. & Dubs, A. (1982). Predictive coding, a fresh view of inhibition in the retina. Proceedings of the Royal Society B (London) 216, 427459.Google ScholarPubMed
Steinberg, R.H. (1969). Rod and cone contributions to S-potentials from the cat retina. Vision Research 9, 13191329.CrossRefGoogle ScholarPubMed
Suzuki, S., Tachibana, M. & Kaneko, A. (1990). Effects of glycine and GABA on isolated bipolar cells of the mouse retina. Journal of Physiology 421, 645662.CrossRefGoogle ScholarPubMed
Tachibana, M. & Kaneko, A. (1984). Gamma-aminobutyric acid acts at axon terminals of turtle photoreceptors, difference in sensitivity among cell types. Proceedings of the National Academy of Sciences of the U.S.A. 81, 283294.CrossRefGoogle ScholarPubMed
Tranchina, D., Sneyd, J. & Cadenas, I.D. (1991). Light adaptation in turtle cones, testing and analysis of a model for transduction. Biophysical Journal 60, 217237.CrossRefGoogle Scholar
Tsukamoto, Y., Smith, R.G. & Sterling, P. (1990). Collective coding improves signal-to-noise ratio in ganglion cells. Proceedings of the National Academy of Sciences of the U.S.A. 87, 18601864.CrossRefGoogle Scholar
Van De Grind, W.A. & Grüsser, O.-J. (1981). Frequency transfer properties of cat-retina horizontal cells. Vision Research 21, 15651572.CrossRefGoogle ScholarPubMed
Van Hateren, J.H. (1993). Spatiotemporal contrast sensitivity of early vision. Vision Research 33, 257267.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1991). Many diverse types of retinal neurons show tracer coupling when injected with biocytin or Neurobiotin. Neuroscience Letters 125, 187190.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1993). The coupling pattern of axon-bearing horizontal cells in the mammalian retina. Proceedings of the Royal Society B (London) 252, 93101.Google ScholarPubMed
Vardi, N., Kaufman, D.L. & Sterling, P. (1994). Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase. Visual Neuroscience 11, 135142.CrossRefGoogle Scholar
Vardi, N. & Sterling, P. (1994). Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vision Research 34, 12351246.CrossRefGoogle ScholarPubMed
Wässle, H. (1971). Optical quality of the cat eye. Vision Research 11, 9951006.CrossRefGoogle ScholarPubMed
Wässle, H., Boycott, B.B. & Peichl, L. (1978 a). Receptor contacts of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 247267.Google ScholarPubMed
Wässle, H., Peichl, L. & Boycott, B.B. (1978 b). Topography of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 269291.Google ScholarPubMed
Werblin, F.S. (1971). Adaptation in a vertebrate retina: Intracellular recording in Necturus. Journal of Neurophysiology 34, 228241.CrossRefGoogle Scholar
Werblin, F.S. (1974). Control of retinal sensitivity, II Lateral interactions at the outer plexiform layer. Journal of General Physiology 63, 6287.CrossRefGoogle Scholar
Wu, S.M. (1991). Input-output relations of the feedback synapse between horizontal cells and cones in the tiger salamander retina. Journal of Neurophysiology 65, 11971206.CrossRefGoogle ScholarPubMed
Yeh, H.H., Lee, M.B. & Cheun, J.E. (1990). Properties of GABA-activated whole-cell currents in bipolar cells of the rat retina. Visual Neuroscience 4, 349357.CrossRefGoogle ScholarPubMed