Published online by Cambridge University Press: 03 July 2008
In the natural environment, color discriminations are made within a rich context of spatial and temporal variation. In classical laboratory methods for studying chromatic discrimination, there is typically a border between the test and adapting fields that introduces a spatial chromatic contrast signal. Typically, the roles of spatial and temporal contrast on chromatic discrimination are not assessed in the laboratory approach. In this study, S-cone discrimination was measured using stimulus paradigms that controlled the level of spatio-temporal S-cone contrast between the tests and adapting fields. The results indicate that S-cone discrimination of chromaticity differences between a pedestal and adapting surround is equivalent for stimuli containing spatial, temporal or spatial-and-temporal chromatic contrast between the test field and the surround. For a stimulus condition that did not contain spatial or temporal contrast, the visual system adapted to the pedestal instead of the surround. The data are interpreted in terms of a model consistent with primate koniocellular pathway physiology. The paradigms provide an approach for studying the effects of spatial and temporal contrast on discrimination in natural scenes.