Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T14:12:08.727Z Has data issue: false hasContentIssue false

Retinal projections in quail (Coturnix coturnix)

Published online by Cambridge University Press:  02 June 2009

Robert B. Norren Jr
Affiliation:
Department of Psychology, Barnard College of Columbia University, New York
Rae Silver
Affiliation:
Department of Psychology, Barnard College of Columbia University, New York

Abstract

The trajectory of retinal projections and the location of retinorecipient nuclei in the quail brain was examined after application of horseradish peroxidase (HRP) either to the cut end of the optic nerve or following intraocular injection of HRP. Retinal projections to the hypothalamus, dorsalateral anterior thalamus (rostralateral part, magnocellular part, and lateral part), lateral anterior thalamus, lateroventral geniculate nucleus, lateral geniculate intercalated nuclei (rostral and caudal parts), ventrolateral thalamus, superficial synencephalic nucleus, external nucleus, tectal gray, diffuse pretectal area, pretectal optic area, ectomammillary nucleus, and optic tectum were revealed. Retinal projections observed in quail were compared with results obtained in other avian species and considered in relation to possible anatomic pathways underlying photoperiodism and circadian rhythms.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvarado-Mallart, R.M. & Sotelo, C. (1984). Homotopic and heterotopic transplantations of quail tectal primordia in chick embryos: organization of the retinotectal projections in the chimeric embryos. Developmental Biology 103, 378398.Google Scholar
Benowitz, L.I. & Karten, H.J. (1976). Organization of the tectofugal visual pathway in the pigeon: a retrograde transport study. Journal of Comparative Neurology 167, 503520.CrossRefGoogle Scholar
Bons, N. & Oliver, J. (1986). Origin of the afferent connections to the parolfactory lobe in quail shown by retrograde labelling with a fluorescent neuron tracer. Experimental Brain Research 63, 125134.CrossRefGoogle Scholar
Brecha, N., Karten, H.J. & Laverack, C. (1979). Enkephalin-containing amacrine cells in the avian retina: immunohistochemical localization. Proceedings of the National Academy of Sciences of the U.S.A. 76, 30103014.CrossRefGoogle ScholarPubMed
Brecha, N., Karten, H.J. & Hunt, S.P. (1980). Projections of the nucleus of the basal optic root in the pigeon: an autoradiographic and horseradish peroxidase study. Journal of Comparative Neurology 189, 615670.CrossRefGoogle ScholarPubMed
Cassone, V.M. & Moore, R.Y. (1987). The retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow (Passer domesticus). Journal of Comparative Neurology 266, 171182.CrossRefGoogle ScholarPubMed
Cooper, M.L., Pickard, G.E. & Silver, R. (1983). Retinohypothalamic pathway in the dove demonstrated by anterograde HRP. Brain Research Bulletin 10, 715718.CrossRefGoogle ScholarPubMed
Cowan, W.M., Adamson, L. & Powell, T.P.S. (1961). An experimental study of the avian visual system. Journal of Anatomy (London) 95, 545563.Google ScholarPubMed
Cowan, W.M. (1970). Centrifugal fibers to the avian retina. British Medical Bulletin 26, 112118.CrossRefGoogle Scholar
Crossland, W.J. & Uchwat, C.J. (1979). Topographic projections of the retina and optic tectum upon the ventral lateral geniculate nucleus in the chick. Journal of Comparative Neurology 185, 87106.CrossRefGoogle ScholarPubMed
Davies, D.T. & Follett, B.K. (1975). The neuroendocrine control of gonadotrophin release in the Japanese quail, II: The role of the anterior hypothalamus. Proceedings of the Royal Society B (London) 191, 303315.Google ScholarPubMed
Dowling, J.E. & Cowan, W.M. (1966). An electron microscopic study of normal and degenerating centrifugal fiber terminals in the pigeon retina. Zeitschrfit für Zellforschung und Mikroskopische Anatomie 71, 1428.CrossRefGoogle ScholarPubMed
Ehrlich, D. & Mark, R. (1984). An atlas of the primary visual projections in the brain of the chick (Gallus gallus). Journal of Comparative Neurology 223, 592610.Google Scholar
Hartwig, H.G. (1970). Das visuelle System von Zonotrichia leucophrys gambelii. Neurohistologische Studien auf experimenteller Grundlage. Zeitschrift für Zellforschung 106, 556583.CrossRefGoogle Scholar
Herbuté, S. & Baylé, J.D. (1976). Pineal multiunit activity in conscious quail: effects of light, blinding, gaglionectomy. American Journal of Physiology 231, 136140.CrossRefGoogle Scholar
Homma, K., Wilson, W.O. & Siopes, T.D. (1972). Eyes have a role in photoperiodic control of sexual activity of Coturnix. Science 178, 421423.CrossRefGoogle ScholarPubMed
Hunt, S.P. & Webster, K.E. (1975). The projection of the retina upon the optic tectum of the pigeon. Journal of Comparative Neurology 162, 433446.Google Scholar
Hunt, S.P. & Künzle, H. (1976). Observations on the projections and intrinsic organization of the pigeon optic tectum: an autoradiographic study based on anterograde and retrograde axonal and dendritic flow. Journal of Comparative Neurology 170, 153172.Google Scholar
Ikushima, M., Watanabe, M. & Ito, H. (1986). Distribution and morphology of retinal ganglion cells in the Japanese quail. Brain Research 376, 329334.Google Scholar
Jungherr, E.L. (1969). The neuroanatomy of the domestic fowl. Avian Diseases Special Issue, 1126.Google ScholarPubMed
Karten, H.J. (1965). Projections of the optic tectum of the pigeon. Anatomical Record 151, 369.Google Scholar
Karten, H.J. & Revzin, A.M. (1966). The afferent connections of the nucleus rotundus in the pigeon. Brain Research 2, 368377.CrossRefGoogle ScholarPubMed
Karten, H. & Nauta, W.J.H. (1968). Organizational of retinothalamic projections in the pigeon and owl. Anatomical Record 160, 373.Google Scholar
Karten, H.J., Hodos, W., Nauta, W.J.H. & Revzin, A.M. (1973). Neural connections of the “visual Wulst” of the avian telencephalon. Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). Journal of Comparative Neurology 150, 253278.CrossRefGoogle ScholarPubMed
Karten, H.J., Fite, K.V. & Brecha, N. (1977). Specific projection of displaced retinal ganglion cells upon the accessory optic system in the pigeon (Columba livia). Proceedings of the National Academy of Science of the U.S.A. 74, 17531756.Google Scholar
Karten, H.J. & Brecha, N. (1982). Neuropeptides in the vertebrate retina. In Neurotransmitter Interaction and Compartmentation, ed. Bradford, H.F., pp. 719733. New York: Plenum.CrossRefGoogle Scholar
Konishi, H., Ohta, M. & Homma, K. (1985). Important role of the eyes controlling the locomotor rhythm in quail. Journal of Interdisciplinary Cycle Research 16, 217226.CrossRefGoogle Scholar
La Vail, J.H. & La Vail, M.M. (1974). The retrograde intraaxonal transport of horseradish peroxidase in the chick visual system: a light and electron microscopic study. Journal of Comparative Neurology 57, 303358.CrossRefGoogle Scholar
Maturana, H.R. & Frenk, S. (1963). Directional movement and horizontal edge detectors in the pigeon retina. Science 142, 977979.CrossRefGoogle ScholarPubMed
McGill, J.I., Powell, T.P.S. & Cowan, W.M. (1966). The retinal representation upon the optic tectum and isthmo-optic nucleus in the pigeon. Journal of Anatomy 100, 533.Google ScholarPubMed
McKenna, O.C. & Wallman, J. (1985). Accessory optic system and pretectum of birds: comparisons with those of other vertebrates. Brain Behavior and Evolution 26, 91116.CrossRefGoogle ScholarPubMed
Mesulam, M-M. (1982). Principles of horseradish peroxidase neurochemistry and their applications for tracing neural pathways-axonal transport, enzyme histochemistry, and light microscopic analysis. In Tracing Neural Connections with Horseradish Peroxidase, ed. Mesulam, M-M., pp. 1151. New York: John Wiley & Sons.Google Scholar
Miceli, D., Peyrichoux, J. & Repérant, J. (1975). The retino-thalamohyperstriatal pathway in the pigeon (Columba livia). Brain Research 100, 125131.Google Scholar
Miceli, D. & Repérant, J. (1983). Hyperstriatal-tectal projections in the pigeon (Columba livia) as demonstrated by the retrograde double-label fluorescence technique. Brain Research 276, 147153.CrossRefGoogle ScholarPubMed
Norgren, R.B. & Silver, R. (1989). Retinohypothalamic projections in birds. Brain Behavior and Evolution (in press).Google Scholar
Oliver, J. & Baylé, J.-D. (1976). The involvement of the preoptic-suprachiasmatic region in the photosexual reflex in quail: effects of selective lesions and photic stimulation. Journal of Physiology (Paris) 72, 627637.Google Scholar
Oliver, J. & Baylé, J.D. (1982). Brain photoreceptors for the photo-induced testicular response in birds. Experientia 38, 10211029.Google Scholar
Pessac, B., Towle, A.C., Geffard, M. & Wu, J.Y. (1987). The presence of glutamic acid decarboxylase and gamma-aminobutyric acid immunoreactivity in photoreceptors of hatching quail retina. Brain Research 428, 156159.CrossRefGoogle ScholarPubMed
Repérant, J. (1973). Nouvelles données sur les projections visuelles chez le pigeon (Columba livia). Journal f¨r Hirnforschung 14, 151187.Google Scholar
Repérant, J., Raffin, J.P. & Miceli, D. (1974). La voie rétino-thalamo-hyperstriatale chez le Poussin (Callus domesticus L.). Comptes Rendu Academie Science (Paris) 279, 279282.Google Scholar
Repérant, J. & Angaut, P. (1977). The retinotectal projections in the pigeon. An experimental optical and electron microscope study. Neuroscience 2, 119140.Google Scholar
Rogers, L.J. & Miles, F.A. (1972). Centrifugal control of the avian retina, V: Effects of lesions of the isthmo-optic nucleus on visual behavior. Brain Research 48, 147156.CrossRefGoogle Scholar
Senut, M.C. & Alvarado-Mallart, R.M. (1986). Development of the retinotectal system in normal quail embryos: cytoarchitectonic development and optic fiber innervation. Developmental Brain Research 29, 123140.CrossRefGoogle Scholar
Shimuzu, I., Yoshimoto, M., Kojima, T. & Okadao, N. (1984). Development of retinohypothalamic projections in the chick embryo. Neuroscience Letters 50, 4347.CrossRefGoogle Scholar
Silver, R., Witkovsky, P., Horvath, P., Alones, V., Barnstable, C.J. & Lehman, M.N. (1988). Coexpression of opsin- and VIP-Iike immunoreactivity in CSF-containing neurons of the avian brain. Cell and Tissue Research 253, 189198.Google Scholar
Simpson, S.M., & Follett, B.K. (1981). Pineal and hypothalamic pacemakers: their role in regulating circadian rhythmicity in Japanese quail. Journal of Comparative Physiology 144, 381389.Google Scholar
Simpson, S.M. & Follett, B.K. (1982). Formal properties of the circadian rhythm of locomotor activity in Japanese quail. Journal of Comparative Physiology 145, 391398.Google Scholar
Siopes, T.D. & Wilson, W.O. (1980). Participation of the eyes in the photosexual response of Japanese quail (Coturnix coturnix japonica). Biology of Reproduction 23, 352357.Google ScholarPubMed
Stell, W., Marshak, D., Yamada, T., Brecha, N. & Karten, H.J. (1980). Peptides are in the eye of the beholder. Trends in Neuroscience 3, 292295.Google Scholar
Takatsuji, K., Ito, H., & Masai, H. (1983). Ipsilateral retinal projections in Japanese quail (Coturnix coturnix japonica). Brain Research Bulletin 10, 5356.Google Scholar
Uchiyama, H., Matsutani, S. & Watanabe, M. (1987). Activation of the isthmo-optic neurons by the visual Wulst stimulation. Brain Research 406, 322325.CrossRefGoogle ScholarPubMed
Underwood, H., Binkley, S., Siopes, T. & Mosher, K. (1984). Melatonin rhythms in the eyes, pineal bodies, and blood of Japanese quail (Coturnix coturnix japonica). General and Comparative Endocrinology 56, 7081.Google Scholar
Underwood, H. & Siopes, T. (1984). Circadian organization in Japanese quail. Journal of Experimental Zoology 232, 557566.Google Scholar
Voneida, T.J. & Mello, N.K. (1975). Interhemispheric projection of the optic tectum in the pigeon. Brain Behavior and Evolution 11, 91108.CrossRefGoogle ScholarPubMed
Watanabe, M. (1987). Synaptic organization of the nucleus dorsolater-alis anterior thalami in the Japanese quail (Coturnix coturnix japonica). Brain Research 401, 279291.CrossRefGoogle ScholarPubMed
Weidner, C., Repérant, J., Miceli, D., Haby, M. & Rio, J.P. (1985). An anatomical study of ipsilateral retinal projections in the quail using radioautographic, horseradish peroxidase, fluorescence, and degeneration techniques. Brain Research 340, 99108.CrossRefGoogle ScholarPubMed