Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T21:13:14.504Z Has data issue: false hasContentIssue false

Requirement of N-linked glycosylation site in Drosophila rhodopsin

Published online by Cambridge University Press:  02 June 2009

J. E. O'Tousa
Affiliation:
Department of Biological Sciences, University of Notre Dame, Notre Dame

Abstract

In vitro mutagenesis and germline transformation were used to create a Drosophila mutant, ΔAsn20 lacking the N-linked glycosylation site near the amino terminus of the major rhodopsin (Asn20-Gly-Ser changed to Ile-Gly-Ser). Low opsin protein levels are detected in ΔAsn20 photoreceptors. Electroretinogram responses of mutant flies show that the residual rhodopsin found in this mutant is capable of initiating phototransduction. The organization of rhabdomeres, the photoreceptor organelle containing nearly all of the rhodopsin, is aberrant in the ΔAsn20 mutant and undergoes age-dependent deterioration. These results establish that an N-linked glycosylation site, and likely glycosylation itself, plays a critical role in the maturation of Drosophila rhodopsin.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebury, M.L. & Harorave, P.A. (1986). Molecular biology of the visual pigments. Vision Research 26, 18811895.CrossRefGoogle ScholarPubMed
Baumann, O. & Walz, B. (1989). Topography of Ca2+-sequestering endoplasmic reticulum in photoreceptors and pigmented glial cells in the compound eye of the honeybee drone. Cell Tissue Research 255, 511522.CrossRefGoogle Scholar
Coombe, P.E. (1986). The large monopolar cells L1 and L2 are responsible for the ERG transients in Drosophila. Journal of Comparative Physiology 159, 655665.CrossRefGoogle Scholar
Decouet, H.G. & Tanimura, T. (1987). Monoclonal antibodies provide evidence that the rhodopsin in the outer rhabdomeres of Drosophila melanogaster is not glycosylated. European Journal of Cell Biology 44, 5056.Google Scholar
Dixon, R.A.F., Sigal, I.S., Rands, E., Register, R.B., Candelore, M.R., Blake, A.D. & Strader, C.D. (1986). Cloning of the gene and cDNA for mammalian β-andrenergic receptor and homology with rhodopsin. Nature 321, 7579.CrossRefGoogle Scholar
Doi, T., Molday, R.S. & Khorana, H.G. (1990). Role of intradiscal domain in rhodopsin assembly and function. Proceedings of the National Academy of Sciences of the U.S.A. 87, 49914995.CrossRefGoogle ScholarPubMed
Fleisler, S.J., Rapp, M.E. & Hollyfield, J.G. (1984). Photoreceptor specific degeneration caused by tunicamycin. Nature 311, 575577.CrossRefGoogle Scholar
Fleisler, S.J., Rayborn, M.E. & Hollyfield, J.G. (1986). Proteinbound carbohydrate involvement in plasma membrane assembly: the retinal rod photoreceptor cell as a model. In Protein-Carhohydrate Interactions in Biological Systems, ed. Lark, D.L., pp. 191205. London: Academic Press.Google Scholar
Franceschini, N. (1975). Sampling of the visual environment by the compound eye of the fly: fundamentals and applications. In Photoreceptor Optics, ed. Snyder, A.W. & Menzel, R., pp. 98125. New York: Springer.CrossRefGoogle Scholar
Hargrave, P.A., Mcdowell, J.H., Feldmann, R.J., Atkinson, P.H., Rao, J.K.M. & Argos, P. (1984). Rhodopsin's protein and carbohydrate structure: selected aspects. Vision Research 24, 14871499.CrossRefGoogle ScholarPubMed
Huber, A., Smith, D.P., Zuker, C.S. & Paulsen, R. (1990). Opsin of Calliphora photoreceptors Rl-6: homology with Drosophila Rhl and post-translational processing. Journal of Biological Chemistry 265, 1790617910.CrossRefGoogle Scholar
Jager, R.F. & Fischbach, K.F. (1987). Some improvements of the Heisenberg-Bohl method for mass histology of Drosophila heads. Drosophila Information Service 66, 162165.Google Scholar
Johnson, E.C. & Pak, W.L. (1986). Electrophysiological study of Drosophila rhodopsin mutants. Journal of General Physiology 88, 651673.CrossRefGoogle ScholarPubMed
Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mi Shima, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T. & Numa, S. (1986). Cloning, sequencing and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature 323, 411416.CrossRefGoogle ScholarPubMed
Kunkel, T.A. (1985). Rapid and efficient site-specific mutagenesis without phenotypic selection. Proceedings of the National Academy of Sciences of the U.S.A. 82, 488492.CrossRefGoogle ScholarPubMed
Laemmli, U.K. (1970). Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680685.CrossRefGoogle ScholarPubMed
Larrivee, D.C., Conrad, S.K., Stephenson, R.S. & Pak, W.L. (1981). Mutation that selectively affects rhodopsin concentration in the peripheral photoreceptors of Drosophila melanogaster. Journal of General Physiology 78, 521545.CrossRefGoogle ScholarPubMed
Leonard, D.S. & Pak, W.L. (1984). Photoreceptor degeneration associated with mulations in presumptive opsin structural gene of Drosophila. Society for Neuroscience Abstracts 10, 1032.Google Scholar
O'Tousa, J.E., Baehr, W., Martin, R.L., Hirsh, J., Pak, W.L. & Applebury, M.L. (1985). The Drosophila ninaE gene encodes an opsin. Cell 40, 839850.CrossRefGoogle ScholarPubMed
O'Tousa, J.E., Leonard, D.S. & Pak, W.L. (1989). Morphological defects in ora JK84 photoreceptors caused by mutation in Rl-6 opsin gene of Drosophila. Journal of Neurogenetics 6, 4152.CrossRefGoogle Scholar
Paulsen, R. & Benthrop, J. (1986). Light-modulated biochemical events in fly photoreceptors. Fortschritte der Zoologie 33, 299319.Google Scholar
Rubin, G.M. & Spradling, A. (1983). Vectors for P-element mediated gene transfer in Drosophila. Nucleic Acids Research 11, 63416351.CrossRefGoogle ScholarPubMed
Rubin, G.M. & Spradling, A.C. (1982). Genetic transformations of Drosophila with transposable element vectors. Science 218, 348353.CrossRefGoogle ScholarPubMed
Scavarda, N.J., O'Tousa, J. & Pak, W.L. (1983). Drosophila locus with gene dosage effect on rhodopsin. Proceedings of the National Academy of Sciences of the U.S.A. 80, 44414445.CrossRefGoogle ScholarPubMed
Spradling, A.C. (1986). P element-mediated transformation. In Drosophila: A Practical Approach, ed. Roberts, D.B., pp. 175196. Oxford, England: IRL Press Ltd.Google Scholar
Stark, W.S., Christianson, J.S., Maier, L. & Chen, D.-M. (1991). In herited and environmentally induced retinal degenerations in Drosophila. In Proceedings of the Stockholm Symposium on Retinal Degeneration, ed. Anderson, R.E., Hollyfield, J.G. & Lavail, M.M., pp. 6175. Boca Raton, Florida: CRC Press.Google Scholar
Stark, W.S. & Johnson, M.A. (1980). Microspectrophotometry of Drosophila visual pigments: determinations of conversion efficiency in Rl-6 receptors. Journal of Comparative Physiology 140, 275286.CrossRefGoogle Scholar
Stark, W.S. & Sapp, R. (1987). Ultrastructure of the retina of Drosophila melanogaster: The mutant ora (outer rhabdomeres absent) and its inhibition of degeneration in rdgB (retinal degeneration-B). Journal of Neurogenetics 4, 227240.Google ScholarPubMed
Stark, W.S. & Zitzmann, W.G. (1976). Isolation of adaptation mechanisms and photopigment spectra by vitamin A deprivation in Drosophila. Journal of Comparative Physiology 105, 1527.CrossRefGoogle Scholar
Steele, F. & O'Tousa, J.E. (1989). Rhodopsin activation triggers retinal degeneration in Drosophila rdgC mutant. Neuron 4, 883890.CrossRefGoogle Scholar
Stephenson, R.S., O'Tousa, J., Scavarda, N.J., Randall, L.L. & Pak, W.L. (1983). Drosophila mutants with reduced rhodopsin content. In The Biology of Photoreception, ed. Cosens, D. & Vince-Price, D., pp. 477501. Cambridge: Cambridge University Press.Google Scholar
Struck, D.K. & Lennarz, W.J. (1980). The functions of sacchride lipids in synthesis of glycoproteins. In The Biochemistry of Glycoproteins and Proteoglycans, ed. Lennarz, W.J., pp. 3583. New York: Plenum Press.CrossRefGoogle Scholar
Washburn, T. & O'Tousa, J.E. (1989). Molecular defects in Drosophila rhodopsin mutants. Journal of Biological Chemistry 264, 1546415466.CrossRefGoogle ScholarPubMed
Zuker, C.S., Cowman, A.F. & Rubin, G.M. (1985). Isolation and structure of a rhodopsin gene from D. melanogaster. Cell 40, 851858.CrossRefGoogle ScholarPubMed
Zuker, C.S., Mismer, D., Hardy, R. & Rubin, G.M. (1988). Ectopic expression of a minor rhodopsin cell class: distinguishing the role of primary receptor and cellular context. Cell 53, 475482.CrossRefGoogle ScholarPubMed