Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-05T15:53:51.112Z Has data issue: false hasContentIssue false

A quantitative measure of the electrical activity of human rod photoreceptors using electroretinography

Published online by Cambridge University Press:  02 June 2009

Donald C. Hood
Affiliation:
Department of Psychology, Columbia University, New York
David G. Birch
Affiliation:
Retina Foundation of the Southwest, Dallas

Abstract

An eletrical potential recorded from the cornea, the a-wave of the ERG, is evaluated as a measure of human photoreceptor activity by comparing its behavior to a model derived from in vitro recordings from rod photoreceptors. The leading edge of the ERG exhibits both the linear and nonlinear behavior perdicted by this model. The capability for recording the electrical activity of humans photoreceptors in in vivo opens new avenues for assessing normal and abnormal receptor activity in humans. Furthermore, the quantitative model of the receptor response can be used to isolate the inner retinal contribution, Granit's PII, to the gross ERG. Based on this analysis, the practice of using the trough-to-peak amplitude of the b-wave as a proxy for the amplitude of the inner nuclear layer activity is evaluated.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arden, G.B., Carter, R.M., Hogg, C.R., Powell, D.J., Ernst, W.J.K., Clover, G.M., Lyness, A.L. & Quinlan, M.P. (1983). A modified ERG technique and the results obtained in X-linked retinitis pigmentosa. British Journal of Ophthalmology 67, 419430CrossRefGoogle ScholarPubMed
Baylor, D.A., Hodgkin, A.L. & Lamb, T.D. (1974). The electrical response of turtle cones to flashes and steps of light. Journal of Physiology 242, 685727.CrossRefGoogle ScholarPubMed
Baylor, D.A., Nunn, B.J. & Schnapf, J.L. (1984). The photocurrent, noise, and spectral sensitivity of rods of the monkey (Macaca fascicularis). Journal of Physiology 357, 575607.CrossRefGoogle ScholarPubMed
Birch, D.G. & Fish, G.E. (1987). Rod ERGs in retinitis pigmentosa and cone-rod degeneration. Investigative Ophthalmology and Visual Science 28, 140150.Google ScholarPubMed
Birch, D.G., Herman, W.K., Defaller, J.M., Disbrow, D.T. & Birch, E.E. (1987). The relationship between rod perimetric thresholds and full-field rod ERGs in retinitis pigmentosa. Investigative Ophthalmology and Visual Science 28, 954965.Google ScholarPubMed
Breton, M.E. & Montzka, D. (1990).Isolation of receptor photocurrent response in the gross electroretinogram. OSA Technical Digest Series 3, 5861.Google Scholar
Brown, K.T. (1968). The electroretinogram: its components and their origin. Vision Research 8, 633678.CrossRefGoogle Scholar
Cobbs, W.H. & Pugh, E.N. Jr, (1987). Kinetics and components of the flash photocurrent of isolated retinal rods of the larval salamander (Ambystoma Tigrinum). Journal of Physiology 394, 529572.CrossRefGoogle ScholarPubMed
Fulton, A.B. & Hansen, R.M. (1985). Electroretinography: application of clinical studies of infants. Journal of Pediatric Ophthalmology and Strabismus 22, 251255.CrossRefGoogle ScholarPubMed
Fulton, A.B. & Hansen, R.M.(1988). The relation of rhodopsin and scotopic retinal sensitivity in sector retinitis pigmentosa. American Journal of Ophthalmology 105, 132140.CrossRefGoogle ScholarPubMed
Fulton, A.B. & Rushton, W.A.H. (1978). The human rod ERG: correlation with psychophysical responses in light and dark adaptation. Vision Research 18, 793800.CrossRefGoogle ScholarPubMed
Goodman, G. & Bornschein, H. (1957). Comparative electroretinographic studies in congenital night blindness and total color blindness. Archives of Ophthalmology 58, 174182.CrossRefGoogle ScholarPubMed
Gouras, P., Mackay, C.J. & Lewis, A.L. (1989). The blue-cone electroretinogram isolated in a sex-linked achromat. In Colour Vision Deficiencies, Vol. IX, eds. Drum, B. & Verriest, G., pp. 8993. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Granit, R. (1933). The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. Journal of Physiology 77, 207239.CrossRefGoogle Scholar
Granit, R. (1947). Sensory Mechanism of the Retina. London: Oxford University Press.Google Scholar
Heynen, H.G.M. & van, Norren D. (1985). Origin of the electroretinogram in the intact macaque eye, I: Principle component analysis. Vision Research 25, 697707.CrossRefGoogle Scholar
Hood, D.C. & Birch, D.G. (1989). Use of the ERG a-wave to assess normal and abnormal rod receptor function. Investigative Ophthalmology and Visual Science (Suppl.) 30, 236.Google Scholar
Hood, D.C. & Birch, D.G. (1990 a). The relationship between models of receptor activity and the a-wave of the human ERG. Clinical Vision Science 5, 293297.Google Scholar
Hood, D.C. & Birch, D.G. (1990 b). The a-wave of the human ERG and rod receptor function. Investigative Opthalmology and Visual Science 31, 142153.Google ScholarPubMed
Hood, D.C. & Birch, D.G. (1990 c). The a-wave of the ERG as a quantitative measure of human receptor activity. OSA Technical Digest Series 3, 6669.Google Scholar
Ikeda, H. & Ripps, H. (1966). The electroretinogram of a cone monochromat. Archives of Ophthalmology 75, 513517.CrossRefGoogle ScholarPubMed
Johnson, M.A., Marcus, S., Elman, M.J. & Mcphee, T.J. (1988). Electroretinographic abnormalities associated with neovascularization in central vein occlusion. Archives of Ophthalmology 106, 348352.CrossRefGoogle Scholar
Lamp, T.D. (1986). Transduction in vertebrate photoreceptors: the roles of cyclic GMP and calcium. Trends in Neuroscience 9, 224228.CrossRefGoogle Scholar
Massof, R.W., Wu, L., Finkelstein, D., Perry, D., Starr, S.J. & Johnson, M.A. (1984). Properties of electroretinographic intensity- response functions in retinitis pigmentosa. Documenta Ophihalmologica 57, 279296.CrossRefGoogle ScholarPubMed
Peachey, N.S., Alexander, K.R. & Fishman, G.A. (1989). The luminance-response function of the dark-adapted human electroretinogram. Vision Research 29, 263270.CrossRefGoogle ScholarPubMed
Peachey, N.S., Charles, H.C., Lee, C.M., Fishman, G.A., Cunhavaz, J.G. & Smith, R.T. (1987). Electroretinographic findings in sickle-cell retinopathy. Archives of Ophthalmology 105, 934938.CrossRefGoogle ScholarPubMed
Penn, R.D. & Hagins, W.A. (1972). Kinetics of the photocurrent of retinal rods. Biophysical Journal 12, 10731094.CrossRefGoogle ScholarPubMed
Pugh, E.N. Jr, & Cobbs, W.H. (1986). Visual transduction in vertebrate rods and cones: a tale of two transmitters, calcium and cyclic GMP. Vision Research 26, 16131643.CrossRefGoogle ScholarPubMed
Sawusch, M., Pokorny, J. & Smith, V.C. (1987). Clinical electroretinography for short-wavelength sensitive cones. Investigative Ophthalmology and Visual Science 28, 966974.Google ScholarPubMed
Sneyd, J. & Tranchina, D. (1989). Phototransduction in cones: an inverse problem in enzyme kinetics. Bulletin of Mathematical Biology 51, 749784.CrossRefGoogle ScholarPubMed
Stryer, L. (1986). The cyclic GMP cascade of vision. Annual Review of Neuroscience 9, 87119.CrossRefGoogle ScholarPubMed
Van Norren, D. & Padmos, P. (1973). Human and macaque blue cones studied with electroretinography. Vision Research 13, 12411254.CrossRefGoogle Scholar