Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-27T01:03:24.312Z Has data issue: false hasContentIssue false

Pharmacological studies of the mouse cone electroretinogram

Published online by Cambridge University Press:  06 December 2005

SUMIT SHARMA
Affiliation:
Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland
SHERRY L. BALL
Affiliation:
Research Service, Cleveland VAMC, Cleveland Cole Eye Institute, Cleveland Clinic Foundation, Cleveland
NEAL S. PEACHEY
Affiliation:
Research Service, Cleveland VAMC, Cleveland Cole Eye Institute, Cleveland Clinic Foundation, Cleveland

Abstract

Electroretinography provides a useful noninvasive approach to evaluate cone pathway activity. Despite wide application of the cone ERG to characterize retinal function in transgenic mice and mouse models of human hereditary retinal disease, the cellular origins of the mouse cone ERG have not been well defined. Here, we address this issue using a pharmacological approach that has been previously applied to other species. Agents that block receptor activation at well-defined retinal loci were dissolved in saline and injected into the vitreous of anesthetized adult BALBc/ByJ mice; cone ERGs were recorded 1–2 h later. Analysis of the resulting waveforms indicated that the mouse cone ERG includes a cornea-negative component that is derived from the activity of cone photoreceptors and retinal glial (Müller) cells. Similar to other species, activity of cone depolarizing bipolar cells contributes a large amplitude cornea-positive potential to the mouse cone ERG. In contrast to primate but similar to rat, the mouse cone ERG includes only a small contribution from hyperpolarizing bipolar cell activity. The inner retina appears to contribute to both the a- and b-waves of the mouse cone ERG. These results provide a foundation for interpreting changes in the waveform of the mouse cone ERG that may be observed following genetic alteration or other experimental treatment.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Armington, J.C. (1974). The Electroretinogram. New York: Academic Press.
Bui, B.V. & Fortune, B. (2004). Ganglion cell contributions to the rat full-field electroretinogram. Journal of Physiology 555, 153173.CrossRefGoogle Scholar
Bush, R.A. & Sieving, P.A. (1994). A proximal retinal component in the primate photopic ERG a-wave. Investigative Ophthalmology and Visual Science 35, 635645.Google Scholar
Bush, R.A., Hawks, K.W., & Sieving, P.A. (1995). Preservation of inner retinal responses in the aged Royal College of Surgeons rat. Evidence against glutamate excitotoxicity in photoreceptor degeneration. Investigative Ophthalmology and Visual Science 36, 20542062.Google Scholar
Calvert, P.D., Krasnoperova, N.V., Lyubarsky, A.L., Isayama, T., Nicolo, M., Kosaras, B., Wong, G., Gannon, K.S., Margolskee, R.F., Sidman, R.L., Pugh, E.N.Jr., Makino, C.L., & Lem, J. (2000). Phototransduction in transgenic mice after targeted deletion of the rod transducin α-subunit. Proceedings of the National Academy of Science of the U.S.A. 97, 1391313918.CrossRefGoogle Scholar
Cervetto, L. & MacNichol, E.F., Jr. (1972). Inactivation of horizontal cells in turtle retina by glutamate and aspartate. Science 178, 767768.CrossRefGoogle Scholar
Chang, B., Hawes, N.L., Hurd, R.E., Davisson, M.T., Nusinowitz, S., & Heckenlively, J.R. (2002). Retinal degeneration mutants in the mouse. Vision Research 42, 517525.CrossRefGoogle Scholar
Chang, B., Hawes, N.L., Hurd, R.E., Wang, J., Howell, D., Davisson, M.T., Roderick, T.H., Nusinowitz, S., & Heckenlively, J.R. (2005). Mouse models of ocular diseases. Visual Neuroscience 22, in press (this issue).CrossRef
Chow, R.L., Volgyi, B., Szilard, R.K., Ng, D., McKerlie, C., Bloomfield, S.A., Birch, D.G., & McInnes, R.R. (2004). Control of late off-center cone bipolar cell differentiation and visual signaling by the homeobox gene Vsx1. Proceedings of the National Academy of Sciences of the U.S.A. 101, 17541759.CrossRefGoogle Scholar
Fishman, G.A., Birch, D.G., Holder, G.E., & Brigell, M.G. (2001). Electrophysiologic Testing in Disorders of the Retina, Optic Nerve, and Visual Pathway. Second edition. San Francisco, California: American Academy of Ophthalmology.
Frishman, L.J., Shen, F.F., Du, L., Robson, J.G., Harwerth, R.S., Smith, E.L., III, Carter-Dawson, L., & Crawford, M.L. (1996). The scotopic electroretinogram of macaque after retinal ganglion cell loss from experimental glaucoma. Investigative Ophthalmology and Visual Science 37, 125141.Google Scholar
Green, D.G., Guo, H., & Pillers, D.A. (2004). Normal photoresponses and altered b-wave responses to APB in the mdx(Cv3) mouse isolated retina ERG supports role for dystrophin in synaptic transmission. Visual Neuroscience 21, 739747.CrossRefGoogle Scholar
Green, D.G. & Kapousta-Bruneau, N.V. (1999). A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Visual Neuroscience 16, 727741.Google Scholar
Heckenlively, J.R. & Arden, G.B. (1991). Principles and Practice of Clinical Electrophysiology of Vision. St. Louis, Missouri: Mosby Year Book.
Hood, D.C. & Birch, D.G. (1996). Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. Journal of the Optical Society of America A 13, 623633.CrossRefGoogle Scholar
Khan, N.W., Kondo, M., Hiriyanna, K.T., Jamison, J.A., Bush, R.A., & Sieving, P.A. (2005) Primate retinal signaling pathways: Suppressed on-pathway activity in monkey with glutamate analogues mimics human CSNB1-NYX genetic night blindness. Journal of Neurophysiology 93, 481492.
Knapp, A.G. & Schiller, P.H. (1984). The contribution of on-bipolar cells to the electroretinogram of rabbits and monkeys. A study using 2-amino-4-phosphonobutyrate (L-AP4). Vision Research 24, 18411846.Google Scholar
Kofuji, P., Ceelen, P., Zahs, K.R., Surbeck, L.W., Lester, H.A., & Newman, E.A. (2000). Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: Phenotypic impact in retina. Journal of Neuroscience 20, 57335740.Google Scholar
Kondo, M. & Sieving, P.A. (2001). Primate photopic sine-wave flicker ERG: Vector modeling analysis of component origins using glutamate analogs. Investigative Ophthalmology and Visual Science 42, 305312.Google Scholar
Krishna, V.R., Alexander, K.R., & Peachey, N.S. (2002). Temporal properties of the mouse cone electroretinogram. Journal of Neurophysiology 87, 4248.CrossRefGoogle Scholar
Malchow, R.P. & Yazulla, S. (1986). Separation and light adaptation of rod and cone signals in the retina of the goldfish. Vision Research 26, 16551666CrossRefGoogle Scholar
Massey, S.C. & Miller, R.F. (1990). N-methyl-D-aspartate receptors of ganglion cells in rabbit retina. Journal of Neurophysiology 63, 1630.Google Scholar
Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., & Sasaki, H. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757765.CrossRefGoogle Scholar
Murakami, M., Otsuka, T., & Shimazaki, H. (1975). Effects of aspartate and glutamate on the bipolar cells in the carp retina. Vision Research 15, 456458.CrossRefGoogle Scholar
Odom, J.V., Reits, D., Burgers, N., & Riemslag, F.C. (1992). Flicker electroretinograms: a systems analytic approach. Optometry and Vision Science 69, 106116.CrossRefGoogle Scholar
Ohtoshi, A., Wang, S.W., Maeda, H., Saszik, S.M., Frishman, L.J., Klein, W.H., & Behringer, R.R. (2004). Regulation of retinal cone bipolar cell differentiation and photopic vision by the CVC homeobox gene Vsx1. Current Biology 14, 530536.CrossRefGoogle Scholar
Peachey, N.S. & Ball, S.L. (2003). Electrophysiological analysis of visual function in mutant mice. Documenta Ophthalmologica 107, 1336.CrossRefGoogle Scholar
Pinto, L.H., Vitaterna, M.H., Siepka, S.M., Shimomura, K., Lumayag, S., Baker, M., Fenner, D., Mullins, R.F., Sheffield, V.C., Stone, E.M., Heffron, E., & Takahashi, J.S. (2004). Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Research 44, 33353345.CrossRefGoogle Scholar
Rangaswamy, N.V., Hood, D.C., & Frishman, L.J. (2004a). Regional variations in local contributions to the primate photopic flash ERG: Revealed using the slow-sequence mfERG. Investigative Ophthalmology and Visual Science 45, 32333247.Google Scholar
Rangaswamy, N.V., Frishman, L.J., Dorotheo, E.U., Schiffman, J.S., Bahrani, H.M., & Rang, R.A. (2004b). Photopic ERGs in patients with optic neuropathies: Comparison with primate ERGs after pharmacologic blockade of inner retina. Investigative Ophthalmology and Visual Science 45, 38273837.Google Scholar
Robson, J.G. & Frishman, L.J. (1995). Response linearity and kinetics of the cat retina: The bipolar cell component of the dark-adapted electroretinogram. Visual Neuroscience 12, 837850.CrossRefGoogle Scholar
Robson, J.G., Saszik, S.M., Ahmed, J., & Frishman, L.J. (2003). Rod and cone contributions to the a-wave of the electroretinogram of the macaque. Journal of Physiology 547, 509530.CrossRefGoogle Scholar
Saszik, S.M., Robson, J.G., & Frishman, L.J. (2002). The scotopic threshold response of the dark-adapted electroretinogram of the mouse. Journal of Physiology 543, 899916.CrossRefGoogle Scholar
Seiple, W.H., Siegel, I.M., Carr, R.E., & Mayron, C. (1986). Evaluating macular function using the focal ERG. Investigative Ophthalmology and Visual Science 27, 11231130.Google Scholar
Shiells, R.A. & Falk, G. (1999). Contribution of rod, on-bipolar, and horizontal cell light responses to the ERG of dogfish retina. Visual Neuroscience 16, 503511.Google Scholar
Sieving, P.A., Frishman, L.J., & Steinberg, R.H. (1986). Scotopic threshold response of proximal retina in cat. Journal of Neurophysiology 56, 10491061.Google Scholar
Sieving, P.A., Murayama, K., & Naarendorp, F. (1994). Push–pull model of the primate photopic electroretinogram: A role for hyperpolarizing neurons in shaping the b-wave. Visual Neuroscience 11, 519532.CrossRefGoogle Scholar
Slaughter, M.M. & Miller, R.F. (1981). 2-amino-4-phosphonobutyric acid: A new pharmacological tool for retina research. Science 211, 182185.CrossRefGoogle Scholar
Slaughter, M.M. & Miller, R.F. (1983). An excitatory amino acid antagonist blocks cone input to sign-conserving second-order retinal neurons. Science 219, 12301232.CrossRefGoogle Scholar
Stockton, R.A. & Slaughter, M.M. (1989). B-wave of the electroretinogram. A reflection of ON bipolar cell activity. Journal of General Physiology 93, 101122.Google Scholar
Ueno, S., Kondo, M., Niwa, Y., Terasaki, H., & Miyake, Y. (2004). Luminance dependence of neural components that underlies the primate photopic electroretinogram. Investigative Ophthalmology and Visual Science 45, 10331040.CrossRefGoogle Scholar
Witkovsky, P.P., Dudek, F.E., & Ripps, H. (1975). Slow PIII component of the carp electroretinogram. Journal of General Physiology 65, 119134.CrossRefGoogle Scholar
Wu, J., Marmorstein, A.D., & Peachey, N.S. (2004). Contribution of Kir4.1 to the mouse electroretinogram. Molecular Vision 10, 650654.Google Scholar
Xu, L., Ball, S.L., Alexander, K.R., & Peachey, N.S. (2003). Pharmacological analysis of the rat cone electroretinogram. Visual Neuroscience 20, 297306.CrossRefGoogle Scholar