Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-25T01:01:20.707Z Has data issue: false hasContentIssue false

Pattern of ocular dominance columns and cytochrome oxidase activity in a macaque monkey with naturally occurring anisometropic amblyopia

Published online by Cambridge University Press:  02 June 2009

Jonathan C. Horton
Affiliation:
Beckman Vision Center, University of California at San Francisco, San Francisco
Davina R. Hocking
Affiliation:
Beckman Vision Center, University of California at San Francisco, San Francisco
Lynne Kiorpes
Affiliation:
Center for Neural Science, New York University, New York

Abstract

Unilateral eyelid suture, a model for amblyopia induced by congenital cataract, produces shrinkage of the deprived eye's ocular dominance columns in the striate cortex. Loss of geniculocortical projections are thought to account for the poor vision in the amblyopic eye. It is uncertain whether ocular dominance columns become shrunken in other forms of amblyopia. We examined the striate cortex in a pigtailed macaque with natural anisometropia discovered at age 5 months. Amblyopia in the left eye was documented at 1 year by behavioral testing. At age 6 years, the left eye was injected with [3H]proline and the striate cortex was processed for autoradiography and cytochrome oxidase (CO). The ocular dominance columns in layer IVc labelled with [3H]proline were normal. CO staining showed a novel pattern of thin dark bands in layer IV. These bands occupied the core zones at the center of the ocular dominance columns. Their appearance resulted from relative loss of CO activity along the borders of the ocular dominance columns, regions specialized for binocular processing. These findings indicate that not all forms of amblyopia are accompanied by shrinkage of ocular dominance columns. The unusual pattern of CO staining in layer IVc reflected a subtle alteration in metabolic activity which may have resulted from impairment of binocular function in anisometropic amblyopia.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeder, L.M., Peck, L.B. & Howland, H.C. (1990). Prevalence of anisometropia in volunteer laboratory and school screening populations. Investigative Ophthalmology and Visual Science 31, 24482455.Google ScholarPubMed
Baitch, L.W., IIIRidder, W.H., Harwerth, R.S. & IIISmith, E.L. (1991). Binocular beat VEPs: Losses of cortical binocularity in monkeys reared with abnormal visual experience. Investigative Ophthalmology and Visual Science 32, 30963103.Google Scholar
Boothe, R.G., Kiorpes, L. & Hendrickson, A.E. (1982). Anisometropic amblyopia in Macaca nemestrina monkeys produced by atropinization of one eye during development. Investigative Ophthalmology and Visual Science 22, 228233.Google ScholarPubMed
Bradley, A. & Freeman, R.D. (1981). Contrast sensitivity in anisometropic amblyopia. Investigative Ophthalmology and Visual Science 21, 467476.Google ScholarPubMed
Eggers, H.M. & Blakemore, C. (1978). Physiological basis of anisometropic amblyopia. Science 201, 264267.CrossRefGoogle ScholarPubMed
Florence, S.L. & Kaas, J.H. (1992). Ocular dominance columns in area 17 of old world macaque and talapoin monkeys: Complete reconstructions and quantitative analyses. Visual Neuroscience 8, 449462.CrossRefGoogle ScholarPubMed
Harwerth, R.S., IIISmith, E.L., Boltz, R.L., Crawford, M.L.J. & Von Noorden, G.K. (1983). Behavioral studies on the effect of abnormal early visual experience in monkeys: Spatial modulation sensitivity. Vision Research 23, 15011510.CrossRefGoogle ScholarPubMed
Helveston, E.M. (1966). Relationship between degree of anisometropia and depth of amblyopia. American Journal of Ophthalmology 62, 757759.Google Scholar
Helveston, E.M. & Von Noorden, G.K. (1967). Microtropia. Archives of Ophthalmology 78, 272281.CrossRefGoogle ScholarPubMed
Hendrickson, A.E., Movshon, J.A., Eggers, H.M., Gizzi, M.S., Boothe, R.G. & Kiorpes, L. (1987). Effects of early unilateral blur on the macaque's visual system. II. Anatomical observations. Journal of Neuroscience 7, 13271339.CrossRefGoogle ScholarPubMed
Horton, J.C. & Hubel, D.H. (1981). Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292, 762764.Google Scholar
Horton, J.C. (1984). Cytochrome oxidase patches: A new cytoarchitectonic feature of monkey visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 199253.Google ScholarPubMed
Horton, J.C. & Stryker, M.P. (1993). Amblyopia induced by anisometropia without shrinkage of ocular dominance columns in human striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 90, 54945498.CrossRefGoogle ScholarPubMed
Horton, J.C. & Hocking, D.R. (1996 a). An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. Journal of Neuroscience 16, 17911807.CrossRefGoogle ScholarPubMed
Horton, J.C. & Hocking, D.R. (1996 b). Intrinsic variability of ocular dominance column periodicity in normal macaque monkeys. Journal of Neuroscience 16, 72287239.CrossRefGoogle ScholarPubMed
Hubel, D.H., Wiesel, T.N. & Levay, S. (1977). Plasticity of ocular dominance columns in monkey striate cortex. Philosophical Transactions of the Royal Society B (London) 278, 377409.Google ScholarPubMed
Ikeda, H. & Tremain, K.E. (1978). Amblyopia resulting from penalisation: Neurophysiological studies of kittens reared with atropinisation of one or both eyes. British Journal of Ophthalmology 62, 2128.CrossRefGoogle ScholarPubMed
Jampolsky, A., Flom, B.C., Weymouth, F.W. & Moses, L.E. (1955). Unequal corrected visual acuity as related to anisometropia. Archives of Ophthalmology 54, 893905.CrossRefGoogle ScholarPubMed
Kiorpes, L. & Boothe, R.G. (1981). Naturally occurring strabismus in monkeys (Macaca nemestrina). Investigative Ophthalmology and Visual Science 20, 257263.Google ScholarPubMed
Kiorpes, L., Boothe, R.G., Hendrickson, A.E., Movshon, J.A., Eggers, H.M. & Gizzi, M.S. (1987). Effects of early unilateral blur on the Macaque's visual system. 1. Behavioral observations. Journal of Neuroscience 7, 13181326.CrossRefGoogle Scholar
Kiorpes, L. (1989). The development of spatial resolution and contrast sensitivity in naturally strabismic monkeys. Clinical Vision Science 4. 279293.Google Scholar
Kiorpes, L., Kiper, D.C. & Movshon, J.A. (1993). Contrast sensitivity and vernier acuity in amblyopic monkeys. Vision Research 33, 23012311.CrossRefGoogle ScholarPubMed
Kivlin, J.D. & Flynn, J.T. (1981). Therapy of anisomctropic amblyopia. Journal of Pediatric Ophthalmology and Strabismus 18, 4756.CrossRefGoogle ScholarPubMed
LeVay, S., Hobel, D.H. & Wiesel, T.N. (1975). The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. Journal of Comparative Neurology 159, 559575.CrossRefGoogle ScholarPubMed
LeVay, S., Wiesel, T.N. & Hubel, D.H. (1980). The development of ocular dominance columns in normal and visually deprived monkeys. Journal of Comparative Neurology 191, 151.CrossRefGoogle ScholarPubMed
LeVay, S., Connolly, M., Houde, J. & Van Essen, D.C. (1985). The complete pattern of ocular dominance stripes in the striate cortex and visual field of the macaque monkey. Journal of Neuroscience 5, 486501.CrossRefGoogle ScholarPubMed
Movshon, J.A., Eggers, H.M., Gizzi, M.S., Hendrickson, A.E., Kiorpes, L. & Boothe, R.G. (1987). Effects of early unilateral blur on the macaque's visual system. III. Physiological observations. Journal of Neuroscience 7, 13401351.CrossRefGoogle ScholarPubMed
Peters, H.B. (1969). The influence of anisometropia on stereosensitivity. American Journal of Optometry and Archives of the American Academy of Optometry 46, 120123.CrossRefGoogle ScholarPubMed
Purves, D. & LaMantia, A. (1993). Development of blobs in the visual cortex of macaques. Journal of Comparative Neurology 334, 169175.Google Scholar
Rosa, M.G.P., Gattass, R., Fiorani, M., & Soares, J.G.M. (1992). Laminar, columnar and topographic aspects of ocular dominance in the primary visual cortex of Cebus monkeys. Experimental Brain Research 88, 249264.CrossRefGoogle ScholarPubMed
Saunders, K.J. (1995). Early refractive development in humans. Survey of Ophthalmology 40, 207216.Google Scholar
Sen, D.K. (1980). Anisometropic amblyopia. Journal of Pediatric Ophthalmology and Strabismus 17, 180184.CrossRefGoogle ScholarPubMed
IIISmith, E.L., Harwerth, R.S. & Crawford, M. (1985). Spatial contrast sensitivity deficits in monkeys produced by optically induced anisometropia. Investigative Ophthahnologv and Visual Science 26, 330342.Google Scholar
Tigges, M., Boothe, R.G., Tigges, J. & Wilson, J.R. (1992). Competition between an aphakic and an occluded eye for territory in striate cortex of developing Rhesus monkeys: Cytochrome oxidase histochemistry in layer 4C. Journal of Comparative Neurology 316, 173186.CrossRefGoogle Scholar
Townshend, A.M., Holmes, J.M. & Evans, L.S. (1993). Depth of anisometropic amblyopia and difference in refraction. American Journal of Ophthalmology 116, 431436.Google Scholar
Van Essen, D.C., Newsome, W.T. & Maunsell, J.H.R. (1984). The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies, and individual variability. Vision Research 24, 429448.CrossRefGoogle ScholarPubMed
von Noorden, G.K. & Crawford, M.L.J. (1977). Form deprivation without light deprivation produces the visual deprivation syndrome i. Macaca mulatta. Brain Research 129, 3744.Google Scholar
von Noorden, G.K. (1990). Binocular Vision and Ocular Motility. St. Louis, Missouri: The C.V. Mosby Company.Google Scholar
Walraven, J. (1975). Amblyopia screening with random-dot stereograms. American Journal of Ophthalmology 80, 893900.CrossRefGoogle ScholarPubMed
Wiesel, T.N. & Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. Journal of Neurophysiology 26, 10031017.CrossRefGoogle ScholarPubMed