Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-23T01:55:41.512Z Has data issue: false hasContentIssue false

The multifaceted role of inhibitory interneurons in the dorsal lateral geniculate nucleus

Published online by Cambridge University Press:  31 August 2017

CHARLES L. COX*
Affiliation:
Department of Physiology, Michigan State University, East Lansing, Michigan 48824
JOSEPH A. BEATTY
Affiliation:
Department of Physiology, Michigan State University, East Lansing, Michigan 48824
*
*Address correspondence to: Charles L. Cox, Department of Physiology, Michigan State University, 567 Wilson Road, East Lansing, MI 48824. E-mail: [email protected]

Abstract

Intrinsic interneurons within the dorsal lateral geniculate nucleus (dLGN) provide a feed-forward inhibitory pathway for afferent visual information originating from the retina. These interneurons are unique because in addition to traditional axodendritic output onto thalamocortical neurons, these interneurons have presynaptic dendrites that form dendrodendritic synapses onto thalamocortical neurons as well. These presynaptic dendrites, termed F2 terminals, are tightly coupled to the retinogeniculate afferents that synapse onto thalamocortical relay neurons. Retinogeniculate stimulation of F2 terminals can occur through the activation of ionotropic and/or metabotropic glutamate receptors. The stimulation of ionotropic glutamate receptors can occur with single stimuli and produces a short-lasting inhibition of the thalamocortical neuron. By contrast, activation of metabotropic glutamate receptors requires tetanic activation and results in longer-lasting inhibition in the thalamocortical neuron. The F2 terminals are predominantly localized to the distal dendrites of interneurons, and the excitation and output of F2 terminals can occur independent of somatic activity within the interneuron thereby allowing these F2 terminals to serve as independent processors, giving rise to focal inhibition. By contrast, strong transient depolarizations at the soma can initiate a backpropagating calcium-mediated potential that invades the dendritic arbor activating F2 terminals and leading to a global form of inhibition. These distinct types of output, focal versus global, could play an important role in the temporal and spatial roles of inhibition that in turn impacts thalamocortical information processing.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acuna-Goycolea, C., Brenowitz, S.D. & Regehr, W.G. (2008). Active dendritic conductances dynamically regulate GABA release from thalamic interneurons. Neuron 57, 420431.CrossRefGoogle ScholarPubMed
Antal, M., Acuna-Goycolea, C., Pressler, R.T., Blitz, D.M. & Regehr, W.G. (2010). Cholinergic activation of M2 receptors leads to context-dependent modulation of feedforward inhibition in the visual thalamus. PLoS Biology 8, e1000348.Google Scholar
Blitz, D.M. & Regehr, W.G. (2005). Timing and specificity of feed-forward inhibition within the LGN. Neuron 45, 917928.CrossRefGoogle ScholarPubMed
Bloomfield, S.A. & Sherman, S.M. (1989). Dendritic current flow in relay cells and interneurons of the cat’s lateral geniculate nucleus. Proceedings of the National Academy of Sciences of the United States of America 86, 39113914.Google Scholar
Casale, A.E. & McCormick, D.A. (2011). Active action potential propagation but not initiation in thalamic interneuron dendrites. Journal of Neuroscience 31, 1828918302.Google Scholar
Cox, C. & Sherman, S. (2000). Control of dendritic outputs of inhibitory interneurons in the lateral geniculate nucleus. Neuron 27, 597610.Google Scholar
Cox, C.L., Zhou, Q. & Sherman, S.M. (1998). Glutamate locally activates dendritic outputs of thalamic interneurons. Nature 394, 478482.Google Scholar
Crandall, S.R. & Cox, C.L. (2012). Local dendrodendritic inhibition regulates fast synaptic transmission in visual thalamus. Journal of Neuroscience 32, 25132522.Google Scholar
Crandall, S.R. & Cox, C.L. (2013). Thalamic microcircuits: Presynaptic dendrites form two feedforward inhibitory pathways in thalamus. Journal of Neurophysiology 110, 470480.CrossRefGoogle ScholarPubMed
Dubin, M.W. & Cleland, B.G. (1977). Organization of visual inputs to interneurons of lateral geniculate nucleus of the cat. Journal of Neurophysiology 40, 410427.Google Scholar
Famiglietti, E.V. (1970). Dendro-dendritic synapses in the lateral geniculate nucleus of the cat. Brain Research 20, 181191.Google Scholar
Famiglietti, E.V.J. & Peters, A. (1972). The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. Journal of Comparative Neurology 144, 285334.Google Scholar
Godwin, D.W., Van Horn, S.C., Erisir, A., Sesma, M., Romano, C. & Sherman, S.M. (1996). Ultrastructural localization suggests that retinal and cortical inputs access different metabotropic glutamate receptors in the lateral geniculate nucleus [Online]. Journal of Neuroscience 16, 81818192. Available at: http://www.jneurosci.org/content/16/24/8181.long.Google Scholar
Govindaiah, G. & Cox, C.L. (2004). Synaptic activation of metabotropic glutamate receptors regulates dendritic outputs of thalamic interneurons. Neuron 41, 611623.Google Scholar
Govindaiah, G. & Cox, C.L. (2006). Metabotropic glutamate receptors differentially regulate GABAergic inhibition in thalamus. Journal of Neuroscience 26, 1344313453.Google Scholar
Govindaiah, G. & Cox, C.L. (2009). Distinct roles of metabotropic glutamate receptor activation on inhibitory signaling in the ventral lateral geniculate nucleus. Journal of Neurophysiology 101, 17611773.Google Scholar
Grossman, A., Lieberman, A.R. & Webster, K.E. (1973). A Golgi study of the rat dorsal lateral geniculate nucleus. Journal of Comparative Neurology 150, 441466.CrossRefGoogle ScholarPubMed
Guillery, R.W. (1969). The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Zeitschrift fuer Zellforschung und Mikroskopische Anatomie 96, 138.Google Scholar
Hamos, J.E., Van Horn, S.C., Raczkowski, D., Uhlrich, D.J. & Sherman, S.M. (1985). Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat. Nature 317, 618621.Google Scholar
Hirsch, J.A., Wang, X., Sommer, F.T. & Martinez, L.M. (2015). How inhibitory circuits in the thalamus serve vision. Annual Review of Neuroscience 38, 309329.CrossRefGoogle ScholarPubMed
Holdefer, R.N., Norton, T.T. & Godwin, D.W. (1989). Effects of bicuculline on signal detectability in lateral geniculate nucleus relay cells. Brain Research 488, 341347.Google Scholar
Hubel, D.H. (1960). Single unit activity in lateral geniculate body and optic tract of unrestrained cats. Journal of Physiology 150, 91104.Google Scholar
Johnston, D. & Narayanan, R. (2008). Active dendrites: Colorful wings of the mysterious butterflies. Trends in Neuroscience 31, 309316.CrossRefGoogle ScholarPubMed
Jones, E.G. & Rockel, AJ. (1971). The synaptic organization in the medial geniculate body of afferent fibres ascending from the inferior colliculus. Zeitschrift fuer Zellforschung und Mikroskopische Anatomie 113, 4466.Google Scholar
Jurgens, C.W.D., Bell, K.A., McQuiston, A.R. & Guido, W. (2012). Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus. PLoS One 7, e45717.CrossRefGoogle ScholarPubMed
Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology 16, 3768.Google Scholar
Li, J., Wang, S. & Bickford, M.E. (2003). Comparison of the ultrastructure of cortical and retinal terminals in the rat dorsal lateral geniculate and lateral posterior nuclei. Journal of Comparative Neurology 460, 394409.Google Scholar
Lieberman, A.R. (1973). Neurons with presynaptic perikarya and presynaptic dendrites in the rat lateral geniculate nucleus. Brain Research 59, 3559.Google Scholar
Martinez, L.M., Molano-Mazón, M., Wang, X., Sommer, F.T. & Hirsch, J.A. (2014). Statistical wiring of thalamic receptive fields optimizes spatial sampling of the retinal image. Neuron 81, 943956.Google Scholar
Montero, V.M. (1986). Localization of gamma-aminobutyric acid (GABA) in type 3 cells and demonstration of their source to F2 terminals in the cat lateral geniculate nucleus: A Golgi-electron-microscopic GABA-immunocytochemical study. Journal of Comparative Neurology 254, 228245.Google Scholar
Morest, D.K. (1971). Dendrodendritic synapses of cells that have axons: The fine structure of the Golgi type II cell in the medial geniculate body of the cat. Zeitschrift fuer Anatomie und Entwicklungsgeschichte 133, 216246.Google Scholar
Munsch, T., Freichel, M., Flockerzi, V. & Pape, H-C. (2003). Contribution of transient receptor potential channels to the control of GABA release from dendrites. Proceedings of the National Academy of Sciences of the United States of America 100, 1606516070.CrossRefGoogle Scholar
Munsch, T., Yanagawa, Y., Obata, K. & Pape, H-C. (2005). Dopaminergic control of local interneuron activity in the thalamus. European Journal of Neuroscience 21, 290294.Google Scholar
Ohara, P.T. & Lieberman, A.R. (1993). Some aspects of the synaptic circuitry underlying inhibition in the ventrobasal thalamus. Journal of Neurocytology 22, 815825.Google Scholar
Pape, H-C. & McCormick, D.A. (1995). Electrophysiological and pharmacological properties of interneurons in the cat dorsal lateral geniculate nucleus. Neuroscience 68, 11051125.CrossRefGoogle ScholarPubMed
Parnavelas, J.G., Mounty, E.J., Bradford, R. & Lieberman, A.R. (1977). The postnatal development of neurons in the dorsal lateral geniculate nucleus of the rat: A Golgi study. Journal of Comparative Neurology 171, 481499.Google Scholar
Perreault, M.C., Qin, Y., Heggelund, P. & Zhu, J.J. (2003). Postnatal development of GABAergic signaling in the rat lateral geniculate nucleus: Presynaptic dendritic mechanisms. Journal of Physiology 546, 137148.Google Scholar
Pressler, R.T. & Regehr, W.G. (2013). Metabotropic glutamate receptors drive global persistent inhibition in the visual thalamus. Journal of Neuroscience 33, 24942506.CrossRefGoogle ScholarPubMed
Rafols, J.A. & Valverde, F. (1973). The structure of the dorsal lateral geniculate nucleus in the mouse. Journal of Comparative Neurology 150, 303332.CrossRefGoogle ScholarPubMed
Ralston, H.J. & Herman, M.M. (1969). The fine structure of neurons and synapses in the ventrobasal thalamus of the cat. Brain Research 14, 7797.Google Scholar
Ralston, H.J. (1971). Evidence for presynaptic dendrites and a proposal for their mechanism of action. Nature 230, 585587.Google Scholar
Sillito, A.M. & Kemp, J.A. (1983). The influence of GABAergic inhibitory processes on the receptive field structure of X and Y cells in cat dorsal lateral geniculate nucleus (dLGN). Brain Research 277, 6377.CrossRefGoogle ScholarPubMed
Suresh, V., Çiftçioğlu, U.M., Wang, X., Lala, B.M., Ding, K.R., Smith, W.A., Sommer, F.T. & Hirsch, J.A. (2016). Synaptic contributions to receptive field structure and response properties in the rodent lateral geniculate nucleus of the thalamus. Journal of Neuroscience 36, 1094910963.CrossRefGoogle ScholarPubMed
Van Horn, S.C., Erisir, A. & Sherman, S.M. (2000). Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology 416, 509520.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Wang, X., Vaingankar, V., Sanchez, C.S., Sommer, F.T. & Hirsch, J.A. (2011). Thalamic interneurons and relay cells use complementary synaptic mechanisms for visual processing. Nature Neuroscience 14, 224231.CrossRefGoogle ScholarPubMed
Wang, X., Wei, Y., Vaingankar, V., Wang, Q., Koepsell, K., Sommer, F.T. & Hirsch, J.A. (2007). Feedforward excitation and inhibition evoke dual modes of firing in the cat’s visual thalamus during naturalistic viewing. Neuron 55, 465478.CrossRefGoogle ScholarPubMed
Wiesel, T.N. (1959). Recording inhibition and excitation in the cat’s retinal ganglion cells with intracellular electrodes. Nature 183, 264265.Google Scholar
Williams, S.R., Turner, J.P., Anderson, C.M. & Crunelli, V. (1996). Electrophysiological and morphological properties of interneurons in the rat dorsal lateral geniculate nucleus in vitro . Journal of Physiology 490, 129147.Google Scholar