Published online by Cambridge University Press: 02 June 2009
The immunocytochemical labeling of arrestin (S-antigen) in photoreceptors of the ovine retina was examined following incubation of the retina with hydroxylamine (NH2OH), an agent known to inhibit the phosphorylation of photoactivated rhodopsin. Intact, isolated retinas bathed in medium containing 20 mM NH2OH, or in control medium lacking NH2OH, were maintained in darkness or exposed to bright light for 3 min (dark-adapted and light-adapted conditions, respectively); further incubated in darkness for 10 min; and then fixed and prepared for cryosectioning. Cryosections were incubated with anti-S-antigen monoclonal antibody MAb A2G5; with secondary antibodies that were conjugated with horseradish peroxidase; and with either 3–amino-9–ethyl carbazole or diaminobenzidine as chromogen. Anti-arrestin labeling in cryosections was then analyzed densitometrically using a light-microscopic image processing system. In dark-adapted control retinas, labeling density of the photoreceptor outer segment (OS) layer (0.061 ± 0.004; average ± S.e.m.) was less than that of the inner segment (IS) layer (0.138 ± 0.011). In light-adapted control retinas, OS labeling density (0.139 ± 0.007) exceeded IS labeling density (0.095 ± 0.005). Incubation with NH2OH eliminated this light-dependent increase in labeling of the OS relative to that of the IS, i.e. eliminated the increase in relative OS/IS labeling. Densities of labeling were 0.110 ± 0.006 (OS) and 0.183 ± 0.006 (IS) in NH2OH-treated dark-adapted retinas vs. 0.078 ± 0.004 (OS) and 0.182 ± 0.008 (IS) in NH2OH-treated light-adapted retinas. Anti-arrestin labeling was also examined in retinas that were exposed to 3 min or 13 min of bright light and then immediately fixed. Among retinas incubated in the absence of NH2OH, an increase in OS/IS labeling density was evident after 3 min of illumination, and retinas illuminated for 13 min exhibited an even larger increase in OS/IS labeling. An increase in OS/IS labeling was also exhibited by NH2OH-treated retinas that had been illuminated for 3 min; by comparison with dark-adapted NH2OH-treated controls (average value of OS/IS labeling: 0.60), OS/IS labeling in these illuminated retinas was 0.97. However, OS/IS labeling in NH2OH-treated retinas that had been illuminated for 13 min (average value: 0.35) was lower than that of the dark-adapted controls. The results indicate that, within intact rods, NH2OH inhibits the light-dependent increase in OS/IS anti-arrestin labeling that is ordinarily expressed at long times (~10 min) after major bleaching of the visual pigment. Among the possible bases for the effect of NH2OH are a reduction in the driving force for the movement of arrestin from the inner to the outer segment and/or a facilitation of the degradation of arrestin in the outer segment.