Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T14:25:35.948Z Has data issue: false hasContentIssue false

Direction-sensitive X and Y cells within the A laminae of the cat's LGNd

Published online by Cambridge University Press:  02 June 2009

Kirk G. Thompson
Affiliation:
Department of Anatomy, University of Utah, School of Medicine, Salt Lake City
Yifeng Zhou
Affiliation:
Department of Biology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
Audie G. Leventhal
Affiliation:
Department of Anatomy, University of Utah, School of Medicine, Salt Lake City

Abstract

Drifting sinusoidal gratings, moving bars, and moving spots were employed to study the direction sensitivity of 425 neurons in the A laminae of the cat's LGNd. Thirty-two percent of X- and Y-type LGNd relay cells exhibit significant direction sensitivity when tested with drifting sinusoidal gratings. X and Y cells exhibit the same degree of direction sensitivity. Moving spots and bars elicit direction specific responses from LGNd cells that are consistent with those elicited when drifting sinusoidal gratings are employed. For cells that are both orientation and direction sensitive, the preferred direction tends to be orthogonal to the preferred orientation. In general, direction sensitivity is strongest at relatively low spatial frequencies, well below the spatial-frequency cutoff for the cell. The presence of significant numbers of direction-sensitive LGNd cells raises the possibility that subcortical direction specificity is important for the generation of this property in the visual cortex.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H. & Bergen, J.R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 285299.CrossRefGoogle ScholarPubMed
Albus, K., Wolf, W. & Beckman, R. (1983). Orientation bias in the response of kitten LGNd neurons to moving light bars. Developmental Brain Research 6, 308313.CrossRefGoogle Scholar
Barlow, H.B. & Levick, W.R. (1965). The mechanism of directionally selective units in rabbit's retina. Journal of Physiology 178, 477504.CrossRefGoogle ScholarPubMed
Batschelet, E. (1981). Circular Statistics in Biology. New York: Academic Press.Google Scholar
Bishop, P.O., Coombs, J.S. & Henry, G.H. (1973). Receptive fields of simple cells in the cat striate cortex. Journal of Physiology 231, 3160.CrossRefGoogle ScholarPubMed
Bullier, J. & Henry, G.H. (1979). Ordinal position of neurons in cat striate cortex. Journal of Neurophysiology 42, 12511263.CrossRefGoogle ScholarPubMed
Bullier, J., Mustari, M.J. & Henry, G.H. (1982). Receptive field transformations between LGN neurons and S-cells of cat striate cortex. Journal of Neurophysiology 47, 417438.CrossRefGoogle ScholarPubMed
Cleland, B.G. & Levick, W.R. (1974). Brisk and sluggish concentrically organized ganglion cells in the cat's retina. Journal of Physiology 162, 403431.Google Scholar
Daniels, J.D., Norman, J.L. & Pettigrew, J.D. (1977). Biases for oriented moving bars in lateral geniculate nucleus neurons of normal and stripe-reared cats. Experimental Brain Research 29, 155172.CrossRefGoogle ScholarPubMed
Dawis, S., Shapley, R., Kaplan, E. & Tranchina, D. (1984). The receptive field organization of X-cells in the cat: Spatiotemporal coupling and asymmetry. Vision Research 24, 549564.CrossRefGoogle ScholarPubMed
Dean, A.F., Hess, R.F. & Tolhurst, D.J. (1980). Divisive inhibition involved in directional selectivity. Journal of Physiology 308, 8485.Google Scholar
Duysens, J., Maes, H. & Orban, G.A. (1987). The velocity dependence of direction selectivity of visual cortical neurons in the cat. Journal of Physiology 387, 95113.CrossRefGoogle ScholarPubMed
Emerson, R.C. & Gerstein, G.L. (1977). Simple striate neurons in the cat. II: Mechanisms underlying directional asymmetry and direction selectivity. Journal of Neurophysiology 40, 13521361.CrossRefGoogle Scholar
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology 187, 517552.CrossRefGoogle ScholarPubMed
Fernald, R. & Chase, R. (1971). An improved method for plotting retinal landmarks and focusing the eyes. Vision Research 116, 9596.CrossRefGoogle Scholar
Ganz, L. & Felden, R. (1984). Mechanism of directional selectivity in simple neurons of the cat's visual cortex analyzed with stationary flash sequences. Journal of Neurophysiology 51, 294324.CrossRefGoogle ScholarPubMed
Goodwin, A.W., Henry, G.H. & Bishop, P.H. (1975). Direction selectivity of simple striate cells: Properties and mechanisms. Journal of Neurophysiology 38, 15001523.CrossRefGoogle Scholar
Hamilton, D.B., Albrecht, D.G. & Geisler, W.S. (1989). Visual cortical receptive fields in monkey and cat: Spatial and temporal phase-transfer function. Vision Research 29, 12851308.CrossRefGoogle ScholarPubMed
Hammond, P.W. (1973). Is retinal receptive field shape systematically related to retinal location? Journal of Physiology 234, 64P66P.Google ScholarPubMed
Hammond, P.W. (1974). Cat retinal ganglion cells: size and shape of receptive field centres. Journal of Physiology 242, 99118.CrossRefGoogle ScholarPubMed
Hammond, P.W. & Pomfrett, C.J.D. (1990). Influence of spatial frequency on tuning and bias for orientation and direction in the cat's striate cortex. Vision Research 30, 359369.CrossRefGoogle ScholarPubMed
Hochstein, S. & Shapley, R.M. (1976). Quantitative analysis of retinal ganglion cell classifications. Journal of Physiology 262, 237264.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1959). Receptive fields of single neurones in the cat's visual cortex. Journal of Physiology 148, 574591.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of Physiology 160, 106154.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215243.CrossRefGoogle ScholarPubMed
Lee, B.B., Creutzfeldt, O.D. & Elepfandt, A. (1979). The responses of magno- and parvocellular cells of the monkey's lateral geniculate body to moving stimuli. Experimental Brain Research 35, 547557.CrossRefGoogle ScholarPubMed
Lennie, P. (1981). Parallel visual pathways: A review. Vision Research 20, 561594.CrossRefGoogle Scholar
Leventhal, A.G. & Schall, J.D. (1983). Structural basis of orientation sensitivity of cat retinal ganglion cells. Journal of Comparative Neurology 220, 465475.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Zhou, Y., Ault, S.J. & Thompson, K.G. (1989). Cortical contributions to the orientation sensitivity of relay cells in the cat lateral geniculate nucleus. Society for Neuroscience Abstracts 15, 176.Google Scholar
Leventhal, A.G., Zhou, Y., Thompson, K.G. & Ault, S.J. (1990). Orientation and direction sensitivity of LGNd and area 17 cells in dark reared cats. Society for Neuroscience Abstracts 16, 158.Google Scholar
Leventhal, A.G., Thompson, K.G., Zhou, Y. & Ault, S.J. (1991). Orientation and direction sensitivity of LGNd and striate cortex of dark reared cats. Society for Neuroscience Abstracts 17, 1471.Google Scholar
Leventhal, A.G., Thompson, K.G., Liu, D. & Zhou, Y. (1993). Orientation and direction sensitive relay cells in the monkey's dorsal lateral geniculate nucleus (in preparation).Google Scholar
Levick, W.R. & Thibos, L.N. (1980). Orientation bias of cat retinal ganglion cells. Nature 286, 389390.CrossRefGoogle ScholarPubMed
Levick, W.R. & Thibos, L.N. (1982). Analysis of orientation bias in cat retina. Journal of Physiology 329, 243261.CrossRefGoogle ScholarPubMed
Maex, R. & Orban, G.A. (1991). Subtraction inhibition combined with a spiking threshold accounts for cortical direction selectivity. Proceedings of the National Academy of Sciences of the U.S.A. 88, 35493553.CrossRefGoogle ScholarPubMed
Mardia, K.V. (1972). Statistics of Directional Data. New York: Academic Press.Google Scholar
Marr, D. & Ullman, S. (1981). Directional selectivity and its use in early visual processing. Proceedings of the Royal Society B (London) 211, 151180.Google ScholarPubMed
Movshon, J.A., Thompson, I.D. & Tolhurst, D.J. (1978). Spatial summation in the receptive fields of simple cells in the cat's striate cortex. Journal of Physiology 283, 5377.CrossRefGoogle ScholarPubMed
Oyster, C.W. (1968). An analysis of image motion by the rabbit retina. Journal of Physiology 199, 613635.CrossRefGoogle ScholarPubMed
Pettigrew, J.D., Cooper, M.L. & Blasdel, G.G. (1979). Improved use of tapetal reflection for eye-position monitoring. Investigative Ophthalmology and Visual Science 18, 490495.Google ScholarPubMed
Reichardt, W. (1961). Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In Sensory Communications, ed. Rosenbluth, W.A., pp. 303318. New York: Wiley.Google Scholar
Reid, R.C., Soodak, R.E. & Shapley, R.M. (1991). Directional selectivity and Spatiotemporal structure of receptive fields of simple cells in cat striate cortex. Journal of Neurophysiology 66, 505529.CrossRefGoogle ScholarPubMed
Rodieck, R.W. (1979). Visual pathways. Annual Review of Neuroscience 2, 193225.CrossRefGoogle ScholarPubMed
Schall, J.D., Perry, V.H. & Leventhal, A.G. (1986 a). Retinal ganglion cell dendritic fields in Old-World monkeys are oriented radially. Brain Research 368, 1823.CrossRefGoogle ScholarPubMed
Schall, J.D., Vitek, D.J. & Leventhal, A.G. (1986 b). Retinal constraints on orientation specificity in cat visual cortex. Journal of Neuroscience 6, 823836.CrossRefGoogle ScholarPubMed
Shou, T., Ruan, D. & Zhou, Z. (1986). The orientation bias of LGN neurons shows topographic relation to area centralis in the cat retina. Experimental Brain Research 64, 233236.CrossRefGoogle ScholarPubMed
Shou, T. & Leventhal, A.G. (1989). Organized arrangement of orientation sensitive relay cells in the cat's dorsal lateral geniculate nucleus. Journal of Neuroscience 9, 42874302.CrossRefGoogle ScholarPubMed
Shou, T., Leventhal, A.G. & Thompson, K.G. (1994). Direction sensitivity of X- and Y-type retinal ganglion cells in the cat (submitted).Google Scholar
Sillito, A.M. (1977). Inhibitory process underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex. Journal of Physiology 271, 699720.CrossRefGoogle ScholarPubMed
Smith, E.L. III, Chino, Y.M., Ridder, W.H. III, Kitagawa, K. & Langston, A. (1990). Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys. Visual Neuroscience 5, 525545.CrossRefGoogle ScholarPubMed
Soodak, R.E., Shapley, R.M. & Kaplan, E. (1987). Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. Journal of Neurophysiology 58, 267275.CrossRefGoogle ScholarPubMed
Soodak, R.E., Shapley, R.M. & Kaplan, E. (1991). Fine structure of receptive-field centres of X and Y cells of the cat. Visual Neuroscience 6, 621628.CrossRefGoogle ScholarPubMed
Stone, J. (1983). Parallel Processing in the Visual System: TheClassi-fication of Retinal Ganglion Cells and Its Impact on the Neurobi-ology of Vision. New York: Plenum.CrossRefGoogle Scholar
Stone, J. & Fukuda, Y. (1974). Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. Journal of Neuro-physiology 24, 722848.CrossRefGoogle Scholar
Stone, J., Dreher, B. & Leventhal, A.G. (1979). Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Research Review 1, 345394.CrossRefGoogle Scholar
Thibos, L.N. & Levick, W.R. (1983). Bimodal receptive fields of cat retinal ganglion cells. Vision Research 23, 15611572.CrossRefGoogle ScholarPubMed
Thibos, L.N. & Levick, W.R. (1985). Orientation bias of brisk-transient Y-cells of the cat retina for drifting and alternating gratings. Experimental Brain Research 58, 110.CrossRefGoogle ScholarPubMed
Thompson, K.G., Shou, T., Zhou, Y. & Leventhal, A.G. (1989). Orientation sensitivity of relay cells in the cat lateral geniculate nucleus. Society for Neuroscience Abstracts 15, 175.Google Scholar
Thompson, K.G., Zhou, Y., Leventhal, A.G. & Ault, S.J. (1990). Direction sensitive relay cells in the LGNd of cats and monkeys. Society for Neuroscience Abstracts 16, 158.Google Scholar
Thompson, K.G., Leventhal, A.G., Zhou, Y. & Liu, D. (1994). Stimulus dependence of orientation and direction sensitivity of cat LGNd relay cells without cortical inputs: A comparison with area 17 cells. Visual Neuroscience 11, 939951.CrossRefGoogle ScholarPubMed
Tolhurst, D.J. & Dean, A.F. (1991). Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex. Visual Neuroscience 6, 421428.CrossRefGoogle ScholarPubMed
Van Santen, J.P.H. & Sperling, G. (1985). Elaborated Reichardt detectors. Journal of the Optical Society of America A 2, 300321.CrossRefGoogle ScholarPubMed
Vidyasagar, T.R. (1987). A model of striate response properties based on geniculate anisotropies. Biological Cybernetics 57, 196200.CrossRefGoogle Scholar
Vidyasagar, T.R. & Urbas, J.V. (1982). Orientation sensitivity of cat LGNd neurones with and without inputs from visual cortical areas 17 and 18. Experimental Brain Research 46, 157169.CrossRefGoogle Scholar
Watson, A.B. & Ahumada, A.J. Jr., (1985). Models of human visual motion sensing. Journal of the Optical Society of America A 2, 322342.CrossRefGoogle ScholarPubMed
Wiesel, T.N. & Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology 29, 11151156.CrossRefGoogle ScholarPubMed
Wörgötter, F. & Eysel, U.T. (1987). Quantitative determination of orientational and directional components in the response of visual cortical cells to moving stimuli. Biological Cybernetics 57, 349355.CrossRefGoogle ScholarPubMed
Wörgötter, F., Grundel, O. & Eysel, U.T. (1990). Quantification and comparison of cell properties in cat's striate cortex determined by different types of stimuli. European Journal of Neuroscience 2, 928941.CrossRefGoogle ScholarPubMed
Wörgötter, F., Nieber, E. & Koch, C. (1991). Generation of direction selectivity by isotropic intracortical connections. Neural Computation 4, 332340.CrossRefGoogle Scholar
Zar, J.H. (1974). Circular Distributions. In Biostatistical Analysis. Englewood Cliffs, New Jersey: Prentice-Hall, Inc.Google Scholar
Zhou, Y., Leventhal, A.G. & Thompson, K.G. (1994). Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat. Journal of Neuroscience (in press).Google Scholar