Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:27:51.126Z Has data issue: false hasContentIssue false

Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns

Published online by Cambridge University Press:  02 June 2009

Leah A. Krubitzer
Affiliation:
Department of Psychology, Vanderbilt University, Nashville
Jon H. Kass
Affiliation:
Department of Psychology, Vanderbilt University, Nashville

Abstract

Cortical connections were investigated by restricting injections of WGA-HRP to different parts of the middle temporal visual area, MT, in squirrel monkeys, owl monkeys, marmosets, and galagos. Cortex was flattened and sectioned tangentially to facilitate an analysis of the areal patterns of connections. In the experimental cases, brain sections reacted for cytochrome oxidase (CO) or stained for myelin were used to delimit visual areas of occipital and temporal cortex and visuomotor areas of the frontal lobe. Major findings are as follows: (1) The architectonic analysis suggests that in addition to the commonly recognized visual fields, area 17 (V-I), area 18 (V-II), and MT, all three New World monkeys and prosimian galagos have visual areas DL, DI, DM, MST, and FST. (2) Measurements of the size of these areas indicate that about a third of the neocortex in these primates is occupied by the eight visual areas, but they occupy a somewhat larger proportion of neocortex in the diurnal marmosets and squirrel monkeys than the nocturnal owl monkeys and galagos. The diurnal primates also have proportionally more neocortex devoted to areas 17, 18, and DL and less to MT. These differences are compatible with the view that diurnal primates are more specialized for detailed object and color vision. (3) In all four primates, restricted locations in MT receive major inputs from short meandering rows of neurons in area 17 and several bands of neurons in area 18. (4) Major feedforward projections of MT are to two visual areas adjoining the rostral half of MT, areas MST and FST. Other ipsilateral connections are with DL, DI, and in some cases DM, parts of inferotemporal (IT) cortex, and posterior parietal cortex. (5) In squirrel monkeys, where injection sites varied from caudal to rostral MT, caudal parts of MT representing central vision connect more densely to DL and IT than other parts. Both DL and IT cortex emphasize central vision. (6) In the frontal lobe, MT has dense connections with the frontal ventral area (FV), but not with the frontal eye field (FEF). (7) Callosal connections of MT are most dense with matched locations in MT of the other hemisphere, rather than with the outer boundary of MT representing the vertical meridian. Targets of sparser callosal connections include FST, MST, and DL.

The results support the conclusions that (1) prosimian primates and New World monkeys have at least ten visual and visuomotor areas in common, (2) the connections of MT are remarkably consistent across four species of primates, (3) the anatomical segregation of visual subsystems in areas 17 and 18 is common to all primates, (4) connections from the part of MT representing central vision with visual areas emphasizing central vision are more dense, and (5) MT and the associated fields MST and FST occupy proportionally more cortex in nocturnal than diurnal primates.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.CrossRefGoogle ScholarPubMed
Albright, T.D. & Desimone, R. (1987). Local precision of visuotopic organization in the middle temporal visual area (MT) of the macaque. Experimental Brain Research 65, 582592.CrossRefGoogle ScholarPubMed
Albright, T.D., Desimone, R., & Gross, C.G. (1984). Columnar organization of directionally selective cells in visual area MT of the macaque. Journal of Neurophysiology 51, 1631.CrossRefGoogle ScholarPubMed
Allman, J.M. & Kaas, J.H. (1971 a). A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkeys (Aotus trivirgatus). Brain Research 31, 85105.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1971 b). Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Research 35 89106.CrossRefGoogle ScholarPubMed
Allman, J.M., Kaas, J.H. & Lane, R.H. (1973). The middle temporal visual area (MT) in the bushbaby (Galago senegalensis) Brain Research 57, 197202.CrossRefGoogle ScholarPubMed
Allman, J.M. & Kaas, J.H. (1974 a). The organization of the second visual area (VII) in the owl monkey: a second transformation of the visual hemifield. Brain Research 76, 247265.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1974 b). A crescent-shaped cortical visual area surrounding the middle temporal area (MT) in the owl monkey (Aotus trivirgatus). Brain Research 81, 199213.CrossRefGoogle ScholarPubMed
Allman, J.M. & Kaas, J.H. (1975). The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkeys (Aotus trivirgatus). Brain Research 100, 473487.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1976). Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. Science 191, 572576.CrossRefGoogle ScholarPubMed
Allman, J.M., Miezin, F. & McGuinness, E. (1985). Stimulus-specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons. Annual Review of Neuroscience 8, 407430.CrossRefGoogle ScholarPubMed
Allman, J.M., Campbell, C.B.G. & McGuinness, E. (1979). The dorsal third tier area in Galago senegalensis. Brain Research 179, 355361.CrossRefGoogle ScholarPubMed
Beattie, J. (1927). The anatomy of the common marmoset (Hapole jacchus Kuhl). Proceedings of the Zoological Society of London 1927, 593718.CrossRefGoogle Scholar
Blasdel, G.G. & Salama, G. (1986). Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 597–585.CrossRefGoogle ScholarPubMed
Boussard, D., Ungerleider, L.G. & Desimone, R. (1990). Pathway for motion analysis: cortical connections of visual areas MST and FST in the macaque. Journal of Comparative Neurology 296, 462495.CrossRefGoogle Scholar
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Groshirnrinde, Leipzig: Barth.Google Scholar
Burkhalter, A., Felleman, D.J., Newsome, W.T. & Van Essen, D.C. (1986). Anatomical and physiological asymmetries related to visual area V3 and VP in macaque extrastriate cortex. Vision Research 26, 6380.CrossRefGoogle ScholarPubMed
Burton, H. & Kopf, E.M. (1984). Connections between the thalamus and somatosensory areas of the anterior extosylvian gyrus in the cat. Journal of Comparative Neurology 244, 173205.CrossRefGoogle Scholar
Colby, C.L., Gattass, R., Olson, C.R. & Gross, C.G. (1988). Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: a dual tracer study. Journal of Comparative Neurology 269, 392–314.CrossRefGoogle ScholarPubMed
Condo, G.J. & Casagrande, V.A. (1990). Organization of cytochromeoxidase staining in the visual cortex of nocturnal primates (Galago crassicaudatus and Galago senegalensis), I: Adult patterns. Journal of Comparative Neurology 293, 632645.CrossRefGoogle Scholar
Cowey, A. (1964). Projection of the retina on to striate and prestriate cortex in the squirrel monkey (Saimiri sciureus). Journal of Neurophysiology 27, 366396.CrossRefGoogle Scholar
Cragg, B.G. (1969). The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Research 9, 733747.CrossRefGoogle ScholarPubMed
Cusick, C.G. III, Gould, H.J. & Kaas, J.H. (1984). Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus). Journal Comparative Neurology 230, 311336.CrossRefGoogle ScholarPubMed
Cusick, C.G. & Kaas, J.H. (1988 a). Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys. Visual Neuroscience 1, 211237.CrossRefGoogle ScholarPubMed
Cusick, C.G. & Kaas, J.H. (1988 b). Surface-view patterns of intrinsic and extrinsic cortical connections of area 17 in a prosimian primate. Brain Research 458, 383388.CrossRefGoogle Scholar
Desimone, R. & Ungerleider, L.G. (1986). Multiple visual areas in the caudal superior temporal sulcus of the macaque. Journal of Comparative Neurology 248, 164189.CrossRefGoogle ScholarPubMed
Desimone, R. & Ungerleider, L.G. (1989). Neural mechanisms of visual processing in monkeys. In Handbook of Neuropsychology, Vol. 2, ed. Boller, F. & Grafman, J., pp. 267299. Amsterdam: Elsevier Press.Google Scholar
DeYoe, E.A. & Van Essen, D.C. (1985). Segregation of efferent connections and receptive-field properties in visual area V2 of the macaque. Nature 317, 5861.CrossRefGoogle ScholarPubMed
De Yoe, E.A. & Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219226.CrossRefGoogle ScholarPubMed
Dürsteler, M.R., Wurtz, R.H. & Newsome, W.T. (1987). Directional-pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. Journal of Neurophysiology 57, 12621287.CrossRefGoogle ScholarPubMed
Erickson, R.G., Dow, B.M. & Snyder, A.E. (1989). Representation of the fovea in the superior temporal sulcus of the macaque monkey. Journal of Exploratory Brain Research 78, 90112.Google ScholarPubMed
Felleman, D.J. & Kaas, J.H. (1984). Receptive field properties of neurons in the middle temporal visual area (MT) of owl monkeys. Journal of Neurophysiology 52, 488513.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van Essen, D.J. (1983). V4 of macaque monkey extrastriate cortex. Society for Neuroscience Abstracts 9, 153.Google Scholar
Fiorani, M., Fattass, R., Rosa, M.G.P. & Sousa, A.P.B. (1989). Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability. Journal of Comparative Neurology 287, 98118.CrossRefGoogle ScholarPubMed
Frahm, H.D., Stephan, H. & Baron, G. (1984). Comparison of brain structure volumes in insectivora and primates, V: Area striata (AS). Journal Hinforsch 25, 537557.Google ScholarPubMed
Friedman, D.P. & Murray, E.A. (1986). Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque. Journal of Comparative Neurology 252, 348373.CrossRefGoogle ScholarPubMed
Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurology Research 1, 203209.CrossRefGoogle ScholarPubMed
Gattass, R. & Gross, C.G. (1981). Visual topography of striate projections zone (MT) in posterior superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 621638.CrossRefGoogle ScholarPubMed
Gattass, R., Gross, C.G. & Sandell, J.H. (1981). Visual topography of V2 in the macaque. Journal of Comparative Neurology 201, 519539.CrossRefGoogle ScholarPubMed
Gattass, R., Sousa, A.P. & Gross, C.G. (1988). Visuotopic organization and extent of V3 and V4 of the macaque. Journal of Neuroscience 8, 18311845.CrossRefGoogle ScholarPubMed
Gibson, A.R., Hansma, J.C., Houk, J.C. & Robinson, F.R. (1984). A sensitive low artifact TMB procedure for the demonstration of WGA-HRP in the CNS. Brain Research 298, 235241.CrossRefGoogle ScholarPubMed
Gould, H.U., Weber, J.T. & Rieck, R.W. (1987). Interhemispheric connections in the visual cortex of the squirrel monkey (Saimiri sciureus). Journal of Comparative Neurology 256, 1428.CrossRefGoogle ScholarPubMed
Hassler, R. (1966). Comparative anatomy of the central visual systems in day- and night-active primates. In Evolution of the Forebrain, eds. Hassler, R. & Stephan, H., pp. 419434. Stuttgart, West Germany: Thiem Verlay.CrossRefGoogle Scholar
Hershokovitz, P. (1977). Living New World Monkeys (Platyrrhini), Vol. 1, Chicago, Illinois: University of Chicago Press.Google Scholar
Horton, J.C. (1984). Cytochrome-oxidase patches. A new cytoarchitectonic feature of monkey visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 199253.Google ScholarPubMed
Horton, J.C. & Hedley-Whyte, E.T. (1984). Mapping of cytochrome-oxidase patches and ocular-dominance columns in neurons in human visual cortex. Philosophical Transactions of the Royal Society B (London) 304, 255272.Google Scholar
Hubel, D.H. & Livingstone, M.S. (1987). Segregation of form, color, and stereopsis in primate area 18. Journal of Neuroscience 7, 33783415.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1974). Sequence regularity and geometry of orientation columns in the monkey striate cortex. Journal of Comparative Neurology 158, 267294.CrossRefGoogle ScholarPubMed
Hubel, D.H., Wiesel, T.N. & Stryker, M.P. (1978). Anatomical demonstration of orientation of columns in macaque monkey. Journal of Comparative Neurology 177, 361380.CrossRefGoogle ScholarPubMed
Huerta, M.F., Krubitzer, L.A. & Kaas, J.H. (1987). Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys, II: Cortical connections. Journal of Comparative Neurology 265, 332361.CrossRefGoogle ScholarPubMed
Huerta, M.F. & Kaas, J.H. (1990). Supplementary eye field as defined by intracortical microstimulation: connections in macaques. Journal of Comparative Neurology 293, 299330.CrossRefGoogle ScholarPubMed
Humphrey, A.L., Skeen, L.C. & Norton, T.T. (1980). Topographic organization of the orientation-column system in the striate cortex of the tree shrew (Tupaia glis), II: Deoxyglucose mapping. Journal of Comparative Neurology 192, 544566.Google ScholarPubMed
Kaas, J.H. (1982). The segregation of function in the nervous system. Contributions to Sensory Physiology 7, 201240.CrossRefGoogle Scholar
Kaas, J.H. (1986). The structural basis for information processing in the primate visual system. In Visual Neuroscience, ed. Pettigrew, J.P., Sanderson, K.J. & Levick, W.R., pp. 315340. Cambridge: Cambridge University Press.Google Scholar
Kaas, J.H. (1988). Why does the brain have so many visual areas? Journal of Cognitive Neuroscience 1, 121135.CrossRefGoogle Scholar
Kass, J.H. & Krubitzer, L.A. (1988). Subdivisions of visuomotor and visual cortex in the frontal lobe of primates: the frontal eye field and the target of the middle temporal visual area. Society for Neuroscience Abstracts 14, 820.Google Scholar
Kass, J.H. & Krubitzer, L.A. (1990). The organization of visual cortex in Old World monkeys: studies on the miniature species (Miopithecus talapoin). Investigative Ophthalmology and Visual Science (Suppl.) 31, 398.Google Scholar
Kass, J.H. & Lin, C.H. (1977). Cortical projections in area 18 in owl monkeys. Vision Research 17, 739741.CrossRefGoogle Scholar
Kass, J.H., Huerta, M.F., Weber, J.T. & Harting, J.K. (1978). Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. Journal of Comparative Neurology 182, 517554.CrossRefGoogle Scholar
Kass, J.H., Krubitzer, L.A. & Johanson, K.L. (1989). Cortical connections of areas 17 (V-I) and 18 (V-II) of squirrels. Journal of Comparative Neurology 281, 426446.CrossRefGoogle Scholar
Krubitzer, L.A. & Kass, J.H. (1986). The second somatosensory area in primates: somatotopic organization, architecture, and connections in marmosets (Callithrix jacchus). Society for Neuroscience Abstracts 12, 798.Google Scholar
Krubitzer, L.A. & Kass, J.H. (1987 a). Connections of modular subdivisions of cortical visual areas 17 and 18 with the middle temporal area, MT, in squirrel monkeys. Society for Neuroscience Abstracts 13, 3.Google Scholar
Krubitzer, L.A. & Kaas, J.H. (1987 b). Thalamic connections of three representation of the body surface in somatosensory cortex of gray squirrels. Journal of Comparative Neurology 265, 549580.CrossRefGoogle ScholarPubMed
Krubitzer, L.A. & Kaas, J.H. (1988 a). Cortical connections of MT and DL in the prosimian galago: evidence that modular segregation of parallel pathways is a primitive feature in primates. Society for Neuroscience Abstracts 14, 602.Google Scholar
Krubitzer, L.A. & Kaas, J.H. (1988 b). Responsiveness and somatotopic organization of anterior parietal field 3b and adjoining cortex in newborn and infant monkeys. Somatosensory and Motor Research 6, 176205.CrossRefGoogle ScholarPubMed
Krubitzer, L.A. & Kass, J.H. (1989 a). Cortical integration of parallel pathways in the visual system of primates. Brain Research 478, 161165.CrossRefGoogle ScholarPubMed
Krueitzer, L.A. & Kaas, J.H. (1989 b). Modular connections of extrastriate visual area DM with areas 17, 18, and MT in monkeys. Society for Neuroscience Abstracts 15, 1108.Google Scholar
Krubitzer, L.A. & Kaas, J.H. (1990). The organization and connections of somatosensory cortex in marmosets. Journal of Neuroscience 10, 952974.CrossRefGoogle ScholarPubMed
Kuypers, H.G.J.M., Szwarcbart, M.K., Mishkin, M. & Rosvold, H.E. (1965). Occipitotemporal cortico-cortical connections in the rhesus monkey. Experimental Neurology 11, 245262.CrossRefGoogle Scholar
Leichnitz, G.R. (1989). Inferior frontal eye-field projections to the pursuit-related dorsolateral pontine neucleus and middle temporal area (MT) in the monkey. Visual Neuroscience 3, 171180.CrossRefGoogle Scholar
Lin, C.S., Weller, R.E. & Kaas, J.H. (1982). Cortical connections of striate cortex in the owl monkey. Journal of Comparative Neurology 211, 165176.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1984). Anatomy and physiology of a color system in the primate visual cortex. Journal of Neuroscience 4, 309356.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1987). Connections between layer 4B of area 17 and the thick cytochrome-oxidase stripes of area 18 in the squirrel monkey. Journal of Neuroscience 7, 33713377.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
Logothetis, N.K. & Schall, J.D. (1989). Neuronal correlates of subjective visual perception. Science 245, 761763.CrossRefGoogle ScholarPubMed
Lowell, S., Freeman, B. & Singer, W. (1987). Topographic organization of the orientation-column system in large flat-mounts of the cat visual cortex. A 2-deoxyglucose study. Journal of Comparative Neurology 255, 401415.CrossRefGoogle Scholar
Luethke, L.E., Krubitzer, L.A. & Kaas, J.H. (1989). Connections of the primary auditory cortex in the New World monkey (saguinus). Journal of Comparative Neurology 285, 487513.CrossRefGoogle ScholarPubMed
Lund, J.S. & Boothe, R.G. (1975). Interlaminar connections and pyrmidal neuron organization in the visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology 159, 305334.CrossRefGoogle Scholar
MacAvoy, M.C., Bruce, C.J. & Gottlieb, J. (1988). Smooth-pursuit eye movements elicited by microstimulation in the frontal eye fields region of alert macaque monkeys. Society for Neuroscience Abstracts 14, 956.Google Scholar
Maguire, W.M. & Baizer, J.S. (1984). Visuotopic organization of the prelunate gyrus in rhesus monkey. Journal of Neuroscience 4, 16901704.CrossRefGoogle ScholarPubMed
Maioli, M.G., Squatrito, S., Galletti, C., Battaglini, P.P. & Sanseverino, E.R. (1983). Cortico-cortical connections from the visual region of the superior temporal sulcus to frontal eye field in the macaque. Brain Research 265, 294299.CrossRefGoogle ScholarPubMed
Martinez-Millán, L. & Holländer, H. (1975). Cortico-cortical projections from striate cortex of the squirrel monkey (Saimiri sciureus). A radioautographic study. Brain Research 83, 405417.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Newsome, W.T. (1987). Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10, 363401.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3, 25632586.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1987). Topographic organization of the middle temporal visual area in the macaque monkey: representational biases and the relationship to callosal connections and myeloarchitectonic boundaries. Journal of Comparative Neurology 266, 535555.CrossRefGoogle ScholarPubMed
McGuinness, E., McDonald, C., Sereno, M. & Allman, J. (1986). Primates without blobs: the distribution of cytochrome-oxidase activity in striate cortex in tarsius, hapalemur, cheirogaleus. Society for Neuroscience Abstracts 12, 130.Google Scholar
Mesulam, M.M. (1978). Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. Journal of Histochemisiry and Cytochemistry 26, 106117.CrossRefGoogle Scholar
Mikami, A., Newsome, W.T. & Wurtz, R.H. (1986 a). Motion selectivity in macaque visual cortex, I: Mechanisms of direction and speed selectivity in extrastriate area MT. Journal of Neurophysiology 55, 13081327.CrossRefGoogle ScholarPubMed
Mikami, A., Newsome, W.T. & Wurtz, R.H. (1986 b). Motion selectivity in macaque visual cortex, II: Spatiotemporal range of directional interactions in MT and V1. Journal of Neurophysiology 55, 13281339.CrossRefGoogle ScholarPubMed
Mishkin, M., Ungerleider, L.G. & Macko, K.A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neuroscience 6, 414417.CrossRefGoogle Scholar
Montero, V.M. (1980). Patterns of connections from the striate cortex to cortical visual areas in superior temporal sulcus of macaque and middle temporal gyrus of owl monkey. Journal of Comparative Neurology 189, 4559.CrossRefGoogle ScholarPubMed
Newsome, W.T. & Allman, J.M. (1980). Interhemispheric connections of visual cortex in the owl monkey. Aotus trivirgatus, and the bush-baby, Galago senegalensis. Journal of Comparative Neurology 194, 209233.CrossRefGoogle Scholar
Newsome, W.T. & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8, 22012211.CrossRefGoogle ScholarPubMed
Newsome, W.T., Wurtz, R.H., Dürsteler, M.R. & Mikami, A.(1985). Deficits in visual-motion processing following ibotenic acid lesions of the middle temporal visual area of the macaque monkey. Journal of Neuroscience 5, 825840.CrossRefGoogle ScholarPubMed
Newsome, W.T., Wurtz, R.H. & Komatsu, H. (1988). Relation of cortical areas MT and MST to pursuit eye movements, II: Differentiation of retinal from extraretinal inputs. Journal of Neurophysiology 60, 604620.CrossRefGoogle ScholarPubMed
Olavarria, J. & Van Sluyters, R.C. (1985). Unfolding and flattening the cortex of gyrencephalic brains. Journal of Neuroscience Methods 15, 191202.CrossRefGoogle ScholarPubMed
Pandya, D.N. & Seltzer, B. (1982). Association areas of the cerebral cortex. Trends in Neuroscience 5, 386390.CrossRefGoogle Scholar
Perkel, D.J., Bullier, J. & Kennedy, H. (1986). Topography of the afferent connectivity of area 17 in the macaque monkey: a double-labelling study. Journal of Comparative Neurology 253, 374402.CrossRefGoogle ScholarPubMed
Rockland, K.S. & Pandya, D.N. (1979). Laminar orgins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Research 179, 320.CrossRefGoogle Scholar
Rockland, K.S. & Pandya, D.N. (1981). Cortical Connections of the occipital lobe in the rhesus monkey: interconnections between areas 17, 18, 19, and the superior temporal sulcus. Brain Research 212, 249270.CrossRefGoogle Scholar
Rosa, M.G.P., Sousa, A.P.B. & Gattass, R. (1988). Representation of the visual field in the second visual area in the cebus monkey. Journal of Comparative Neurology 275, 326345.CrossRefGoogle ScholarPubMed
Sereno, M.I., McDonald, C.T. & Allman, J.M. (1986). Organization of extrastriate cortex in the owl monkey. Society for Neuroscience Abstracts 12, 1181.Google Scholar
Sesma, M.A., Casagrande, V.A. & Kaas, J.H. (1984). Cortical connections of area 17 in tree shrews. Journal of Comparative Neurology 230, 337351.CrossRefGoogle ScholarPubMed
Shipp, S. & Zeki, S. (1985). Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex. Nature 315, 322324.CrossRefGoogle ScholarPubMed
Shipp, S. & Zeki, S. (1989 a). The organization of connections between areas VI and V5 of macaque monkey visual cortex. European Journal of Neuroscience 1, 309322.CrossRefGoogle Scholar
Shipp, S. & Zeki, S. (1989 b). The organization of connections between areas V2 and V5 of macaque monkey visual cortex. European Journal of Neuroscience 1, 333354.CrossRefGoogle ScholarPubMed
Siegel, R.M. & Anderson, R.A. (1986). Motion perceptual deficits following ibotenic acid lesions of the middle temporal visual area (MT) in the behaving rhesus monkey. Society for Neuroscience Abstracts 12, 1183.Google Scholar
Spatz, W.B. (1975). An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix. Brain Research 92, 450455.CrossRefGoogle Scholar
Spatz, W.B. (1977). Topographically organized reciprocal connections between areas 17 and MT (visual area of the superior temporal sulcus) in the marmoset (Callithrix jacchus). Experimental Brain Research 27, 559572.CrossRefGoogle ScholarPubMed
Spatz, W.B. & Tigges, J. (1972). Experimental-anatomical studies on the “middle temporal visual area (MT)” in primates. Journal of Comparative Neurology 146, 451464.CrossRefGoogle Scholar
Spatz, W.B., Tigges, J. & Tigges, M. (1970). Subcortical projections, cortical associations, and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimiri). Journal of Comparative Neurology 140, 155174.CrossRefGoogle ScholarPubMed
Stephan, H., Baron, G. & Frahm, H.D. (1988). Comparative size of brains and brain components. Comparative Primate Biology 4, 138.Google Scholar
Symonds, L.L. & Kass, J.H.(Connections of striate cortex in the prosimian (Galago senegalensis). Journal of Comparative Neurology 181, 477512.CrossRefGoogle Scholar
Tigges, J., Spatz, W.B. & Tigges, M. (1974). Efferent cortico-cortical fiber connections of area 18 in the squirrel monkey (Saimiri). Journal of Comparative Neurology 158, 219–136.CrossRefGoogle ScholarPubMed
Tigges, J., Tiggs, M., Anschel, S., Cross, N.A., Letbetter, W.D. & McBride, R.L. (1981). Areal and laminar distribution of neurons interconnecting the central visual cortical areas 17, 18, 19, and MT in squirrel monkey (Saimiri). Journal of Comparative Neurology 202, 539560.CrossRefGoogle Scholar
Tootell, R.B.H., Hamilton, S.L. & Silverman, M.S. (1985). Topography of cytochrome-oxidase activity in owl monkey cortex. Journal of Neuroscience 5, 27862800.CrossRefGoogle ScholarPubMed
Tootell, R.B.H. & Silverman, M.S. (1985). Two methods for flat mounting cortical tissue. Journal of Neuroscience Methods 15, 177190.CrossRefGoogle ScholarPubMed
Tootell, R.B.H., Silverman, M.S., De Valois, R.L. & Jacobs, G.H. (1983). Functional organization of the second cortical visual area in primates. Science 220, 737739.CrossRefGoogle ScholarPubMed
Tootell, R.B.H. & Hamilton, S.L. (1989). Functional anatomy of the second visual area (V2) in the macaque. Journal of Neuroscience 9, 26202644.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. (1985). The corticocortical pathways for object recognition and spatial perception. In Pattern Recognition Mechanisms, ed. Chagas, C., Gattass, R. & Gross, C., pp. 2137. Vatican City: Pontifical Academy of Sciences.CrossRefGoogle Scholar
Ungerleider, L.G. & Mishkin, M. (1979). The striate projection zone in the superior temporal sulcus of Macaca mulatta: location and topographic organization. Journal of Comparative Neurology 188, 347366.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, J.D., Goodale, M.A. & Mansfield, R.J.W., pp. 549586. Cambridge, Massachusetts: MIT Press.Google Scholar
Ungerleider, L.G. & Desimone, (1986 a). Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology 348, 190222.CrossRefGoogle Scholar
Ungerleider, L.G. & Desimone, (1986 b). Projections to the superior temporal sulcus from the central and peripheral field representations of VI and V1. Journal of Comparative Neurology 248, 147163.CrossRefGoogle Scholar
Ungerleider, L.G., Desimone, R. & Moran, J. (1986). Asymmetry of central and peripheral field inputs from area V4 into the temporal and parietal lobes of the macaque. Society for Neuroscience Abstracts 12, 1182.Google Scholar
Van Essen, D.C. (1980). Functional organization of primate visual cortex. In Cerebral Cortex, Vol. 3, ed. Peters, A. & Jones, E.G., pp. 259329. New York: Plenum PressGoogle Scholar
Van Essen, D.C. (1985). Visual areas of the mammalian cerebral cortex. Annual Review of Neuroscience 2, 227263.CrossRefGoogle Scholar
Van Essen, D.C. & Zeki, S.M. (1978). The topographic organization of rhesus monkey prestriate cortex. Journal of Physiology 277, 193226.CrossRefGoogle Scholar
Van Essen, D.C., Maunsell, J.H.R. & Bixby, J.L. (1981). The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties, and topographic organization. Journal of Comparative Neurology 199, 293326.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Newsome, W.T. & Bixby, J.L. (1982). The pattern of interhemispheric connections and its relationship to extrastriate visual areas in the macaque monkey. Journal of Neuroscience 2, 265283.CrossRefGoogle ScholarPubMed
Van Essen, D.C. & Maunsell, J.H.R. (1983). Hierarchical organization and functional streams in the visual cortex. Trends in Neuroscience 6, 370375.CrossRefGoogle Scholar
Van Essen, D.C., Newsome, W.T. & Maunsell, J.H.R. (1984). The visual-field representation in striate cortex of the macaque monkey: asymmetries, anisotropies, and individual variability. Vision Research 24, 529–448.CrossRefGoogle ScholarPubMed
Van Essen, D.C., Newsome, W.T., Maunsell, J.H.R. & Bixby, J.L. (1986). The projections from striate cortex (V1) to areas V2 and V3 in the macaque monkey: asymmetries, areal boundaries, and patchy connections. Journal of Comparative Neurology 244, 451480.CrossRefGoogle ScholarPubMed
Wagor, E., Lin, C.S. & Kaas, J.H. (1975). Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey (Aotus trivirgatus). Journal of Comparative Neurology 163, 227250.CrossRefGoogle ScholarPubMed
Wall, J.T., Symonds, L.L. & Kaas, J.H. (1982). Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos. Journal of Comparative Neurology 211, 193214.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1981). Cortical and subcortical connections of visual cortex in primates. In Cortical Sensory Organization, Vol. 2, ed. Woolsey, C.N., pp. 121155. Clifton, NJ: The Humana Press.Google Scholar
Weller, R.E. & Kaas, J.H. (1982). The organization of the visual system in galago: comparisons with monkeys. In The Lesser Bush Baby (Galago) as an Animal Model: Selected Topics. ed. Haines, P.E., pp. 107135. Boca Raton, Florida: CAC Press.Google Scholar
Weller, R.E. & Kaas, J.H. (1983). Retinotopic patterns of connections of 17 with visual areas V-II and MT in macaque monkeys. Journal of Comparative Neurology 220, 253279.CrossRefGoogle ScholarPubMed
Weller, R.E., Wall, J.T. & Kaas, J.H. (1984). Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys. Journal of Comparative Neurology 228, 81104.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1985). Cortical projections of the dorsolateral visual area in owl monkeys: the prestriate relay to inferior temporal cortex. Journal of Comparative Neurology 234, 3559.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1987). Subdivisions and connections of inferior temporal cortex in owl monkeys. Journal of Comparative Neurology 256, 137172.CrossRefGoogle ScholarPubMed
White, P.F., Way, W.L. & Trevor, A.J. (1982). Ketamine–its pharmacology and therapeutic uses. Anesthesiology 56, 119136.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979 a). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome-oxidase histochemistry. Brain Research 171, 1128.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979 b). Columnar cortico-cortical interconnections within the visual system of the squirrel and macaque monkey. Brain Research 162, 210217.CrossRefGoogle Scholar
Wong-Riley, M. & Carroll, E.W. (1984). Quantitative light- and electron-microscopic analysis of cytochrome-oxidase rich zones in V-II prestriate cortex of the squirrel monkey. Journal of Comparative Neurology 222, 1837.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1969). Representation of central visual fields in prestriate cortex of monkey. Brain Research 14, 271291.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1971). Cortical projections from two prestriate areas in the monkey. Brain Research 34, 1935.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1978 a). The cortical projections of foveal striate cortex in the rhesus monkey. Journal of Physiology (London) 277, 227244.CrossRefGoogle ScholarPubMed
Zeki, S.M. (1978 b). The third visual complex of rhesus monkey prestriate cortex. Journal of Physiology 177, 245272.CrossRefGoogle Scholar
Zeki, S.M. (1980). A direct projection from area V1 to area V3a of rhesus monkey visual cortex. Proceedings of the Royal Society (London) 207, 499506.Google ScholarPubMed