Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T17:06:24.977Z Has data issue: false hasContentIssue false

Classification of potassium and chlorine ionic currents in retinal ganglion cell line (RGC-5) by whole-cell patch clamp

Published online by Cambridge University Press:  30 October 2012

SHU-JIE WANG
Affiliation:
Department of Zoology and Developmental Biology, College of Life Science, Nankai University, Tianjin, People’s Republic of China
LAI-HUA XIE
Affiliation:
Department of Cell Biology and Molecular Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey
BIN HENG
Affiliation:
Department of Zoology and Developmental Biology, College of Life Science, Nankai University, Tianjin, People’s Republic of China
YAN-QIANG LIU*
Affiliation:
Department of Zoology and Developmental Biology, College of Life Science, Nankai University, Tianjin, People’s Republic of China
*
*Address correspondence and reprint requests to: Dr. Yanqiang Liu, College of Life Sciences, Nankai University, Tianjin 300071, People’s Republic of China. E-mail: [email protected], [email protected]

Abstract

Retinal ganglion cell line (RGC-5) has been widely used as a valuable model for studying pathophysiology and physiology of retinal ganglion cells in vitro. However, the electrophysiological characteristics, especially a thorough classification of ionic currents in the cell line, remain to be elucidated in details. In the present study, we determined the resting membrane potential (RMP) in RGC-5 cell line and then identified different types of ionic currents by using the whole-cell patch-clamp technique. The RMP recorded in the cell line was between −30 and −6 mV (−17.6 ± 2.6 mV, n = 10). We observed the following voltage-gated ion channel currents: (1) inwardly rectifying Cl current (ICl,ir), which could be blocked by Zn2+; (2) Ca2+-activated Cl current (ICl,Ca), which was sensitive to extracellular Ca2+ and could be inhibited by disodium 4,4’-diisothiocyanatostilbene-2,2’-disulfonate; (3) inwardly rectifying K+ currents (IK1), which could be blocked by Ba2+; (4) a small amount of delayed rectifier K+ current (IK). On the other hand, the voltage-gated sodium channels current (INa) and transient outward potassium channels current (IA) were not observed in this cell line. These results further characterize the ionic currents in the RGC-5 cell line and are beneficial for future studies especially on ion channel (patho)physiology and pharmacology in the RGC-5 cell line.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boudes, M., Sar, C., Menigoz, A., Hilaire, C., Péquignot, M., Kozlenkov, A., Marmorstein, A., Carroll, P., Valmier, J. & Scamps, F. (2009). Best1 is a gene regulated by nerve injury and required for Ca2+-activated Cl current expression in axotomized sensory neurons. The Journal of Neuroscience 29, 1006310071.CrossRefGoogle ScholarPubMed
Butt, A.M. & Kalsi, A. (2006). Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. Journal of Cellular and Molecular Medicine 10, 3344.CrossRefGoogle Scholar
Chalasani, M.L., Radha, V., Gupta, V., Agarwal, N., Balasubramanian, D. & Swarup, G. (2007). A glaucoma-associated mutant of optineurin selectively induces death of retinal ganglion cells which is inhibited by antioxidants. Investigative Ophthalmology and Visual Science 48, 16071614.CrossRefGoogle ScholarPubMed
Chang, Q.Z., Zhang, S.L., Cai, S.N. & Yin, B.Q. (2010). Study on chloride channel involved in the cultured hippocampal neuronal apoptosis. Chinese Journal of Gerontology 30, 12301232.Google Scholar
Charles, I., Khalyfa, A., Kumar, D.M., Krishnamoorthy, R.R., Roque, R.S., Cooper, N.G. & Agarwal, N. (2005). Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Investigative Ophthalmology and Visual Science 46, 13301338.CrossRefGoogle ScholarPubMed
Chen, L., Yu, Y.C., Zhao, J.W. & Yang, X.L. (2004). Inwardly rectifying potassium channels in rat retinal ganglion cells. The European Journal of Neuroscience 20, 956964.CrossRefGoogle ScholarPubMed
Das, A., Garner, D.P., Del Re, A.M., Woodward, J.J., Kumar, D.M., Agarwal, N., Banik, N.L. & Ray, S.K. (2006). Calpeptin provides functional neuroprotection to rat retinal ganglion cells following Ca2+ influx. Brain Research 1084, 146157.CrossRefGoogle ScholarPubMed
Duan, D.Y., Ye, L.Y., Britton, F., Horowitz, B. & Hume, J.R. (2000). A novel anionic inward rectifier in native cardiac myocytes. Circulation Research 86, E63E71.CrossRefGoogle ScholarPubMed
Enz, R., Ross, B.J. & Cutting, G.R. (1999). Expression of the voltage-gated chloride channel ClC-2 in rod bipolar cells of the rat retina. The Journal of Neuroscience 19, 98419847.CrossRefGoogle ScholarPubMed
Eschke, D., Richter, M., Brylla, E., Lewerenz, A.Spanel-Borowski, K. & Nieber, K. (2002). Identification of inwardly rectifying potassium channels in bovine retinal and choroidal endothelial cells. Ophthalmic Research 34, 343348.CrossRefGoogle ScholarPubMed
Frassetto, L.J., Schlieve, C.R., Lieven, C.J., Utter, A.A., Jones, M.V., Agarwal, N. & Levin, L.A. (2006). Kinase-dependent differentiation of a retinal ganglion cell precursor. Investigative Ophthalmology and Visual Science 47, 427438.CrossRefGoogle ScholarPubMed
Frings, S., Reuter, D. & Kleene, S.J. (2000). Neuronal Ca2+-activated Cl channels: Homing in on an elusive channel species. Progress in Neurobiology 60, 247289.CrossRefGoogle Scholar
Fuller, C.M. & Benos, D.J. (2000). Electrophysiological characteristics of the Ca2+-activated Cl channel family of anion transport proteins. Clinical and Experimental Pharmacology and Physiology 27, 906910.CrossRefGoogle ScholarPubMed
Guenther, E., Schmid, S., Reiff, D. & Zrenner, E. (1999). Maturation of intrinsic membrane properties in rat retinal ganglion cells. Vision Research 39, 24772484.CrossRefGoogle ScholarPubMed
Hartzell, H.C. & Qu, Z.Q. (2003). Chloride currents in acutely isolated Xenopus retinal pigment epithelial cells. The Journal of Physiology 549, 453469.CrossRefGoogle ScholarPubMed
Heath, B.M. & Terrar, D.A. (1996). Separation of the components of the delayed rectifier potassium current using selective blockers of IKr and IKs in guinea-pig isolated ventricular myocytes. Experimental Physiology 81, 587603.CrossRefGoogle ScholarPubMed
Henne, J., Pöttering, S. & Jeserich, G. (2000). Voltage-gated potassium channels in retinal ganglion cells of trout: A combined biophysical, pharmacological, and single-cell RT-PCR approach. Journal of Neuroscience Research 62, 629637.3.0.CO;2-X>CrossRefGoogle Scholar
Inokuchi, Y., Nakajima, Y., Shimazawa, M., Kurita, T., Kubo, M., Saito, A., Sajiki, H., Kudo, T., Aihara, M., Imaizumi, K., Araie, M. & Hara, H. (2009). Effect of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced retinal cell death. Investigative Ophthalmology and Visual Science 50, 334344.CrossRefGoogle ScholarPubMed
Jang, S.S., Park, J., Hur, S.W., Hong, Y.H., Hur, J., Chae, J.H., Kim, S.K., Kim, J., Kim, H.S. & Kim, S.J. (2011). Endothelial progenitor cells functionally express inward rectifier potassium channels. American Journal of Physiology. Cell Physiology 301, C150C161.CrossRefGoogle ScholarPubMed
Ju, W.K., Kim, K.Y., Lindsey, J.D., Angert, M., Patel, A., Scott, R.T., Liu, Q., Crowston, J.G., Ellisman, M.H., Perkins, G.A. & Weinreb, R.N. (2009). Elevated hydrostatic pressure triggers release of OPA1 and cytochrome C and induces apoptotic cell death in differentiated RGC-5 cells. Molecular Vision 15, 120134.Google ScholarPubMed
Ju, W.K., Liu, Q., Kim, K.Y., Crowston, J.G., Lindsey, J.D., Agarwal, N., Ellisman, M.H., Perkins, G.A. & Weinreb, R.N. (2007). Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Investigative Ophthalmology and Visual Science 48, 21452151.CrossRefGoogle ScholarPubMed
Khalyfa, A., Chlon, T., Qiang, H., Agarwal, N. & Cooper, N.G. (2007). Microarray reveals complement components are regulated in the serum-deprived rat retinal ganglion cell line. Molecular Vision 13, 293308.Google ScholarPubMed
Krishnamoorthy, R.R., Agarwal, P., Prasanna, G., Vopat, K., Lambert, W., Sheedlo, H.J., Pang, I.H., Shade, D., Wordinger, R.J., Yorio, T., Clark, A.F. & Agarwal, N. (2001). Characterization of a transformed rat retinal ganglion cell line. Brain Research. Molecular Brain Research 86, 112.CrossRefGoogle ScholarPubMed
Liu, D.W. & Antzelevitch, C. (1995). Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial and endocardial myocytes. A weaker IKs contributes to the longer action potential of the M cell. Circulation Research 76, 351365.CrossRefGoogle Scholar
Maher, P. & Hanneken, A. (2005 a). Flavonoids protect retinal ganglion cells from oxidative stress-induced death. Investigative Ophthalmology and Visual Science 46, 47964803.CrossRefGoogle ScholarPubMed
Maher, P. & Hanneken, A. (2005 b). The molecular basis of oxidative stress induced cell death in an immortalized retinal ganglion cell line. Investigative Ophthalmology and Visual Science 46, 749757.CrossRefGoogle Scholar
McGahon, M.K., Needham, M.A., Scholfield, C.N., McGeown, J.G. & Curtis, T.M. (2009). Ca2+-activated Cl current in retinal arteriolar smooth muscle. Investigative Ophthalmology and Visual Science 50, 364371.CrossRefGoogle ScholarPubMed
Moorhouse, A.J., Li, S.J., Vickery, R.M., Hill, M.A. & Morley, J.W. (2004). A patch-clamp investigation of membrane currents in a novel mammalian retinal ganglion cell line. Brain Research 1003, 205208.CrossRefGoogle Scholar
Nieto, P.S., Acosta-Rodríguez, V.A., Valdez, D.J. & Guido, M.E. (2010). Differential responses of the mammalian retinal ganglion cell line RGC-5 to physiological stimuli and trophic factors. Neurochemistry International 57, 216226.CrossRefGoogle ScholarPubMed
Okada, Y. (2004). Ion channels and transporters involved in cell volume regulation and sensor mechanisms. Cell Biochemistry and Biophysics 41, 233258.CrossRefGoogle ScholarPubMed
Okada, Y., Imendra, K.G., Miyazaki, T., Hotokezaka, H., Fujiyama, R. & Toda, K. (2011). High extracellular Ca2+ stimulates Ca2+-activated Cl currents in frog parathyroid cells through the mediation of arachidonic acid cascade. PLoS One 6, e19158.CrossRefGoogle ScholarPubMed
Okada, Y., Maeno, E., Shimizu, T., Manabe, K., Mori, S. & Nabekura, T. (2004). Dual roles of plasmalemmal chloride channels in induction of cell death. Pflügers Archiv 448, 287295.CrossRefGoogle ScholarPubMed
Okada, Y., Sato, K. & Numata, T. (2009). Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. The Journal of Physiology 587, 21412149.Google ScholarPubMed
Rutledge, E., Bianchi, L., Christensen, M., Boehmer, C., Morrison, R., Broslat, A., Beld, A.M., George, A., Greenstein, D. & Strange, K. (2001). CLH-3, a ClC-2 anion channel ortholog activated during meiotic maturation in C. elegans oocytes. Current Biology 11, 161170.CrossRefGoogle ScholarPubMed
Sakmann, B. & Trube, G. (1984). Conductance properties of single inwardly rectifying potassium channels in ventricular cells from guinea-pig heart. The Journal of Physiology 347, 641657.CrossRefGoogle ScholarPubMed
Shimazawa, M., Inokuchi, Y., Ito, Y., Murata, H., Aihara, M., Miura, M., Araie, M. & Hara, H. (2007). Involvement of ER stress in retinal cell death. Molecular Vision 13, 578587.Google ScholarPubMed
Siegfried, W. & Jentsch, T.J. (2000). From tonus to tonicity: Physiology of ClC chloride channels. Journal of the American Society of Nephrology 11, 13311339.Google Scholar
Strange, K. (2002). Of mice and worms: Novel insights into ClC-2 anion channel physiology. News in Physiological Sciences 17, 1115.Google ScholarPubMed
Tchedre, K.T., Huang, R.Q., Dibas, A., Krishnamoorthy, R.R., Dillon, G.H. & Yorio, T. (2008). Sigma-1 receptor regulation of voltage-gated calcium channels involves a direct interaction. Investigative Ophthalmology and Visual Science 49, 49935002.CrossRefGoogle ScholarPubMed
Wang, G.Y., Ratto, G., Bisti, S. & Chalupa, L.M. (1997). Functional development of intrinsic properties in ganglion cells of the mammalian retina. Journal of Neurophysiology 78, 28952903.CrossRefGoogle ScholarPubMed
Wood, J.P., Chidlow, G., Tran, T. & Jonathan, G. (2010). A comparison of differentiation protocols for RGC-5 cells. Investigative Ophthalmology and Visual Science 51, 37743783.CrossRefGoogle ScholarPubMed
Wood, J.P., Lascaratos, G., Bron, A.J. & Osborne, N.N. (2008). The influence of visible light exposure on cultured RGC-5 cells. Molecular Vision 14, 334344.Google Scholar
Yang, C. & Delay, R.J. (2010). Calcium-activated chloride current amplifies the response to urine in mouse vomeronasal sensory neurons. The Journal of General Physiology 135, 313.CrossRefGoogle ScholarPubMed
Yu, L., Han, N., Jiang, L.G., Zheng, Y.J. & Liu, L.F. (2011). Neuroprotective effects of ClC-3 chloride channel in glutamate-induced retinal ganglion cell RGC-5 apoptosis. Neural Regeneration Research 6, 450456.Google Scholar
Zhu, Y.H., Mucci, A. & Huizinga, J.D. (2005). Inwardly rectifying chloride channel activity in intestinal pacemaker cells. American Journal of Physiology. Gastrointestinal and Liver Physiology 288, G809G821.CrossRefGoogle ScholarPubMed
Zuo, W.H., Zhu, L.Y., Bai, Z.Q., Zhang, H.F., Mao, J.W., Chen, L.X. & Wang, L.W. (2009). Chloride channels involve in hydrogen peroxide-induced apoptosis of PC12 cells. Biochemical and Biophysical Research Communications 387, 666670.CrossRefGoogle ScholarPubMed