Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T02:51:00.703Z Has data issue: false hasContentIssue false

Brain stem and cortical contributions to the generation of horizontal optokinetic eye movements in humans

Published online by Cambridge University Press:  02 June 2009

Laurence R. Harris
Affiliation:
Department of Psychology, York University, Toronto, Ontario
Terri L. Lewis
Affiliation:
Department of Psychology, McMaster University, Hamilton, Ontario
Daphne Maurer
Affiliation:
Department of Psychology, McMaster University, Hamilton, Ontario

Abstract

We evaluated the subcortical pathways’ contribution to human adults’ horizontal OKN by using a method similar to that used previously with cats (Harris & Smith, 1990; Smith & Harris, 1991). Five normal adults viewed plaids composed of two drifting sinusoidal gratings arranged such that their individual directions of drift were 60 deg or more from the direction of coherent motion of the overall pattern. Physiological evidence indicates that under monocular viewing, nasalward coherent motion gives advantage to any crossed subcortical contribution while temporalward coherent motion minimizes it. We recorded horizontal eye movement by infrared reflection and asked subjects to report the perceived direction of motion.

During both binocular and monocular viewing, the direction of the slow phase of OKN fell closer to the direction of coherent movement than to that of the oriented components. Monocular viewing produced no nasal-temporal asymmetries in the influence of coherent motion on the direction of OKN. This suggests that in humans the influence of coherent motion is mediated primarily by cortical mechanisms and, unlike in cats, with little or no involvement of subcortical mechanisms in the generation of horizontal OKN.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aas, J.E. (1989). Subcortical projections to the pontine nuclei in the cat. Journal of Comparative Neurology 282, 331354CrossRefGoogle Scholar
Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525CrossRefGoogle ScholarPubMed
Bjaalie, J.G. & Brodal, P. (1989). Visual pathways to the cerebellum—segregation in the pontine nuclei of terminal fields from different visual cortical areas in the cat. Neuroscience 29, 95107Google Scholar
Blakemore, C.B. & Hillman, P. (1977). An attempt to assess the effects of monocular deprivation and strabismus on synaptic efficiency in the kitten’s visual cortex. Experimental Brain Research 30, 187202Google ScholarPubMed
Carpenter, R.H.S. (1988). Movements of the Eyes. London: Pion.Google Scholar
Collewijn, H. (1985). Integration of adaptive changes of the optokinetic reflex, pursuit and the vestibulo-ocular reflex. In Adaptive Mechanisms in Gaze Control, ed. Berthoz, A. & Jones, G.Melvill, pp. 5169. New York: Elsevier.Google Scholar
Cynader, M. & Harris, L. (1980). Eye-movement in strabismic cats. Nature 286, 6465CrossRefGoogle ScholarPubMed
Evinger, C. & Fuchs, A.F. (1978). Saccadic, smooth pursuit and optokinetic eye movements in the trained cat. Journal of Physiology 285, 209229Google Scholar
Ferrera, V.P. & Wilson, H.R. (1990). Perceived direction of moving two-dimensional patterns. Vision Research 30, 273287Google Scholar
Gizzi, M.S., Katz, E., Schumer, R.A. & Movshon, J.A. (1990). Selectivity for orientation and direction of motion of single neurons in cat striate and extrastriate visual cortex. Journal of Neurophysiology 63, 15291543CrossRefGoogle ScholarPubMed
Grasse, K.L. & Cynader, M.S. (1984). Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. Journal of Neurophysiology 51, 276293CrossRefGoogle ScholarPubMed
Grasse, K.L. & Cynader, M. (1991). The accessory optic system in frontal-eyed animals. In Vision and Visual Dysfunction. Vol. 4. The Neural Basis of Visual Function, ed. Leventhal, A.G. pp. 111139. Boca Raton: CRC Press.Google Scholar
Harris, L.R., Lepore, F., Guillemot, J.-P. & Cynader, M. (1980). Abolition of optokinetic nystagmus in the cat. Science 210, 9192Google Scholar
Harris, L.R., Lewis, T.L. & Maurer, D. (1991). Plaids used to evaluate cortical and subcortical involvement in human optokinetic nystagmus (OKN). Investigative Ophthalmology and Visual Science (Suppl.) 32, 1021.Google Scholar
Harris, L.R. & Smith, A.T. (1990). Plaids used to distinguish direct retinal and cortical contributions to horizontal optokinetic nystagmus. Investigative Ophthalmology and Visual Science (Suppl.) 31, 591.Google Scholar
Hoffmann, K.-P. (1983). Control of the optokinetic reflex by the nucleus of the optic tract in the cat. In Spatially Oriented Behavior, ed. Hein, A. & Jeannerod, M., pp. 135153. New York: Springer Verlag.Google Scholar
Hoffmann, K.-P. (1989). Control of the optokinetic reflex by the nucleus of the optic tract in primates. Progress in Brain Research 80, 173182Google Scholar
Hoffmann, K.-P. & Distler, C. (1986). The role of direction selective cells in the nucleus of the optic tract of cat and monkey during optokinetic nystagmus. In Adaptive Processes in Visual and Oculomotor Systems, ed. Keller, E.L. & Zee, D.S., pp. 261266. Oxford: Pergamon.Google Scholar
Hoffmann, K.-P., Mader, W., Distler, C. & Erickson, R.G. (1988). Physiological and anatomical identification of the nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract in monkeys. Experimental Brain Research 69, 635644CrossRefGoogle ScholarPubMed
Hoffmann, K.-P. & Schoppmann, A. (1975). Retinal input to direction selective cells in the nucleus tractus opticus of the cat. Brain Research 99, 359366Google Scholar
Hoffmann, K.-P. & Schoppmann, A. (1981). A quantitative analysis of the direction—specific response of neurones in the cat’s nucleus of the optic tract. Experimental Brain Research 42, 146157Google Scholar
Howard, I.P. & Ohmi, M. (1984). The efficiency of the central and peripheral retina in driving human optokinetic nystagmus. Vision Research 24, 969976CrossRefGoogle ScholarPubMed
Kato, I., Harada, K., Hasegawa, T., Igarashi, T., Koike, Y. & Kawasaki, T. (1986). Role of the nucleus of the optic tract in monkeys in relation to optokinetic nystagmus. Brain Research 364, 1222CrossRefGoogle ScholarPubMed
Lewis, T.L., Maurer, D. & Brent, H.P. (1989). Optokinetic nystagmus in normal and visually deprived children: Implications for cortical development. Canadian Journal of Psychology 43, 121140Google Scholar
Maioli, C. & Precht, W. (1984). The horizontal optokinetic nystagmus in the cat. Experimental Brain Research 55, 494506Google Scholar
Manny, R.E. & Fern, K.D. (1990). Motion coherence in infants. Vision Research 30, 13191329CrossRefGoogle ScholarPubMed
Montarolo, P.G., Precht, W. & Strata, P. (1981). Functional-organization of the mechanisms subserving the optokinetic nystagmus in the cat. Neuroscience 6, 231246CrossRefGoogle ScholarPubMed
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1986). The analysis of moving visual patterns. Experimental Brain Research (Suppl.), 11, 117152Google Scholar
Mustari, M.J. & Fuchs, A.F. (1989). Discharge patterns of neurons in the pretectal nucleus of the optic tract (NOT) in the behaving primate. Journal of Neurophysiology 64, 7790CrossRefGoogle Scholar
Mustari, M.J. & Wallman, J. (1988). Response properties of dorsolateral pontine units during smooth pursuit in the rhesus macaque. Journal of Neurophysiology 60, 664686CrossRefGoogle ScholarPubMed
Norcia, A.M., Garcia, H., Humphry, R., Holmes, A., Hamer, R.D. & Orel-Dixler, D. (1991 a). Anomalous motion VEPs in infants and in infantile esotropia. Investigative Ophthalmology and Visual Science 32, 436439Google Scholar
Norcia, A.M., Jampolsky, A., Hamer, R.D. & Orel-Dixler, D. (1991 b). Plasticity of human motion processing following strabismus surgery. Investigative Ophthalmology and Visual Science (Suppl.), 32, 1044.Google Scholar
Pola, J. & Wyatt, H.J. (1985). Active and passive smooth movements: Effects of stimulus size and location. Vision Research 25, 10631076Google Scholar
Reed, M.J., Steinbach, M.J., Anstis, S.M., Gallie, B., Smith, D. & Kraft, S. (1991). The development of optokinetic nystagmus in strabismic and monocularly enucleated subjects. Behavioral Brain Research 396, 3142Google Scholar
Schiff, D., Raphan, T. & Cohen, B. (1988). Nystagmus induced by stimulation of the nucleus of the optic tract in the monkey. Experimental Brain Research 70, 114CrossRefGoogle ScholarPubMed
Simpson, J.I. (1984). The accessory optic system. Annual Review of Neuroscience 7, 1341Google Scholar
Simpson, W.A. & Swanston, M.T. (1991). Depth-coded motion signals in plaid perception and optokinetic nystagmus. Experimental Brain Research 86, 447450Google Scholar
Smith, A.T. & Harris, L.R. (1991). Use of plaid patterns to distinguish the corticofugal and direct retinal inputs to the brain-stem optokinetic nystagmus generator. Experimental Brain Research 86, 324332CrossRefGoogle Scholar
Strong, N.P., Malach, R., Lee, P. & Van Sluyters, R.C. (1984). Horizontal optokinetic nystagmus in the cat: Recovery from cortical lesions. Developmental Brain Research 13, 179192CrossRefGoogle Scholar
Tusa, R.J. & Zee, D.S. (1989). Cerebral control of smooth pursuit and optokinetic nystagmus. Current Neurology and Ophthalmology 2, 115146Google Scholar
van den Berg, A.V. & Collewijn, H. (1988). Directional asymmetries of human optokinetic nystagmus. Experimental Brain Research 70, 597604CrossRefGoogle ScholarPubMed
Wells, G.R., Yeo, C.H. & Hardiman, M.J. (1989). Visual projections to the pontine nuclei in the rabbit—orthograde and retrograde tracing studies with WGA-HRP. Journal of Comparative Neurology 279, 629652CrossRefGoogle Scholar
Wood, C.C., Spear, P.D. & Braun, J.J. (1973). Direction-specific deficits in horizontal optokinetic nystagmus following removal of visual cortex in the cat. Brain Research 60, 231237CrossRefGoogle ScholarPubMed
Zee, D.S., Tusa, R.J., Herdman, S.J., Butler, P.H. & Gucer, G. (1987). Effects of occipital lobectomy upon eye movements in primate. Journal of Neurophysiology 58, 883907CrossRefGoogle ScholarPubMed