We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://mc.manuscriptcentral.com/trhg.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To save this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We recently reported an association of offspring educational attainment with polygenic risk scores (PRS) computed on parent’s non-transmitted alleles for educational attainment using the second GWAS meta-analysis article on educational attainment published by the Social Science Genetic Association Consortium. Here we test the replication of these findings using a more powerful PRS from the third GWAS meta-analysis article by the Consortium. Each of the key findings of our previous paper is replicated using this improved PRS (N = 2335 adolescent twins and their genotyped parents). The association of children’s attainment with their own PRS increased substantially with the standardized effect size, moving from β = 0.134, 95% CI = 0.079, 0.188 for EA2, to β = 0.223, 95% CI = 0.169, 0.278, p < .001, for EA3. Parent’s PRS again predicted the socioeconomic status (SES) they provided to their offspring and increased from β = 0.201, 95% CI = 0.147, 0.256 to β = 0.286, 95% CI = 0.239, 0.333. Importantly, the PRS for alleles not transmitted to their offspring — therefore acting via the parenting environment — was increased in effect size from β = 0.058, 95% CI = 0.003, 0.114 to β = 0.067, 95% CI = 0.012, 0.122, p = .016. As previously found, this non-transmitted genetic effect was fully accounted for by parental SES. The findings reinforce the conclusion that genetic effects of parenting are substantial, explain approximately one-third the magnitude of an individual’s own genetic inheritance and are mediated by parental socioeconomic competence.
Research on environmental and genetic pathways to complex traits such as educational attainment (EA) is confounded by uncertainty over whether correlations reflect effects of transmitted parental genes, causal family environments, or some, possibly interactive, mixture of both. Thus, an aggregate of thousands of alleles associated with EA (a polygenic risk score; PRS) may tap parental behaviors and home environments promoting EA in the offspring. New methods for unpicking and determining these causal pathways are required. Here, we utilize the fact that parents pass, at random, 50% of their genome to a given offspring to create independent scores for the transmitted alleles (conventional EA PRS) and a parental score based on alleles not transmitted to the offspring (EA VP_PRS). The formal effect of non-transmitted alleles on offspring attainment was tested in 2,333 genotyped twins for whom high-quality measures of EA, assessed at age 17 years, were available, and whose parents were also genotyped. Four key findings were observed. First, the EA PRS and EA VP_PRS were empirically independent, validating the virtual-parent design. Second, in this family-based design, children's own EA PRS significantly predicted their EA (β = 0.15), ruling out stratification confounds as a cause of the association of attainment with the EA PRS. Third, parental EA PRS predicted the SES environment parents provided to offspring (β = 0.20), and parental SES and offspring EA were significantly associated (β = 0.33). This would suggest that the EA PRS is at least as strongly linked to social competence as it is to EA, leading to higher attained SES in parents and, therefore, a higher experienced SES for children. In a full structural equation model taking account of family genetic relatedness across multiple siblings the non-transmitted allele effects were estimated at similar values; but, in this more complex model, confidence intervals included zero. A test using the forthcoming EA3 PRS may clarify this outcome. The virtual-parent method may be applied to clarify causality in other phenotypes where observational evidence suggests parenting may moderate expression of other outcomes, for instance in psychiatry.
The prevalence of overweight and obesity is growing rapidly in many countries. Socioeconomic inequalities might be important for this increase. The aim of this study was to determine associations of body mass index (BMI), overweight and obesity with educational level and marital status in Chinese twins. Participants were adult twins recruited through the Chinese National Twin Registry (CNTR), aged 18 to 79 years, and the sample comprised 10,448 same-sex twin pairs. Current height, weight, educational attainment, and marital status were self-reported. Regression analyses and structural equation models were conducted to evaluate BMI, overweight, and obesity associated with educational level and marital status in both sexes. At an individual level, both educational level and marital status were associated with higher BMI and higher risk of being overweight and obesity in men, while in women the effects of educational level on BMI were in the opposite direction. In within-Monozygotic (MZ) twin-pair analyses, the effects of educational level on BMI disappeared in females. Bivariate structural equation models showed that genetic factors and shared environmental confounded the relationship between education and BMI in females, whereas marital status was associated with BMI on account of significant positive unique environmental correlation apart in both sexes. The present data suggested that marital status and BMI were associated, independent of familiar factors, for both sexes of this study population, while common genetic and shared environmental factors contributed to education-associated disparities in BMI in females.
Schooling differences between identical twins are often utilized as a natural experiment to estimate returns to education. Despite longstanding doubts about the truly random nature of within-twin-pair schooling discordance, such discordance has not yet been understood comprehensively, in terms of diverse between- and within-family peer, academic, familial, social, and health exposures. Here, a predictive analysis using national U.S. midlife twin data shows that within-pair schooling differences are endogenous to a variety of childhood exposures. Using discordance propensities, returns to education under a true natural experiment are simulated. Results for midlife occupation and income reveal differences in estimated returns to education that are statistically insignificant, suggesting that twin-based estimates of causal effects are robust. Moreover, identical and fraternal twins show similar levels of discordance endogeneity and similar responses to propensity weighting, suggesting that the identical twins may not provide demonstrably better leverage in the causal identification of educational returns.
This article profiles the historical twin databases of the secondary education school attached to the Faculty of Education at the University of Tokyo. The school was established in 1948. Every year, about 50 pairs of twins of all sex and zygosity combinations and aged 11–12 years take an examination, and about 10–20 pairs are admitted based on the results. Three data sets exist: one for applicants (11–12 years), one for junior and senior high school students (12–18 years), and one for graduates (18–79 years). Record linkage of these three databases should facilitate several important research projects; for example, the lifecourse genetic epidemiologic studies and verification of so-called developmental origin of health and disease hypothesis.
This article analyzes the contribution of genetics and the environment to educational attainment, occupational status, and income using data from over 1,100 monozygotic and 400 dizygotic Australian twin pairs aged from 18 to 99. The respective heritability estimates were 0.54, 0.37, and 0.18. The bivariate heritabilities were 0.71 for educational attainment and occupational status, 0.37 for education and income, and 0.61 for occupational status and income. There were no gender and cohort differences in the heritabilities for education and occupation, but for income, contrary to expectations, the heritabilities were significantly higher among women and for the older cohort (aged 50 or older). The sizable contribution of genes to these socioeconomic outcomes suggests that standard sociological and economic theories on the socioeconomic career require substantial modification to accommodate the role of genetics.
Whether monozygotic (MZ) and dizygotic (DZ) twins differ from each other in a variety of phenotypes is important for genetic twin modeling and for inferences made from twin studies in general. We analyzed whether there were differences in individual, maternal and paternal education between MZ and DZ twins in a large pooled dataset. Information was gathered on individual education for 218,362 adult twins from 27 twin cohorts (53% females; 39% MZ twins), and on maternal and paternal education for 147,315 and 143,056 twins respectively, from 28 twin cohorts (52% females; 38% MZ twins). Together, we had information on individual or parental education from 42 twin cohorts representing 19 countries. The original education classifications were transformed to education years and analyzed using linear regression models. Overall, MZ males had 0.26 (95% CI [0.21, 0.31]) years and MZ females 0.17 (95% CI [0.12, 0.21]) years longer education than DZ twins. The zygosity difference became smaller in more recent birth cohorts for both males and females. Parental education was somewhat longer for fathers of DZ twins in cohorts born in 1990–1999 (0.16 years, 95% CI [0.08, 0.25]) and 2000 or later (0.11 years, 95% CI [0.00, 0.22]), compared with fathers of MZ twins. The results show that the years of both individual and parental education are largely similar in MZ and DZ twins. We suggest that the socio-economic differences between MZ and DZ twins are so small that inferences based upon genetic modeling of twin data are not affected.
In many Western countries, women now reach educational levels comparable to men, although their income remains considerably lower. For the past decades, it has become increasingly clear that these measures of socio-economic status are influenced by genetic as well as environmental factors. Less is known about the relationship between education and income, and sex differences. The aim of this study was to explore genetic and environmental factors influencing education and income in a large cohort of young Norwegian twins, with special emphasis on gender differences. National register data on educational level and income were obtained for 7,710 twins (aged 29–41 years). Bivariate Cholesky models were applied to estimate qualitative and quantitative gender differences in genetic and environmental influences, the relative contribution of genetic and environmental factors to the correlation between education and income, and genetic correlations within and between sexes and phenotypes. The phenotypic correlation between educational level and income was 0.34 (0.32–0.39) for men and 0.45 (0.43–0.48) for women. An ACE model with both qualitative and quantitative sex differences fitted the data best. The genetic correlation between men and women (rg) was 0.66 (0.22–1.00) for educational attainment and 0.38 (0.01–0.75) for income, and between the two phenotypes 0.31 (0.08–0.52) for men and 0.72 (0.64–0.85) for women. Our results imply that, in relatively egalitarian societies with state-supported access to higher education and political awareness of gender equality, genetic factors may play an important role in explaining sex differences in the relationship between education and income.