Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-05-05T05:26:24.611Z Has data issue: false hasContentIssue false

Polygenic Selection and Environmental Influence on Adult Body Height: Genetic and Living Standard Contributions Across Diverse Populations

Published online by Cambridge University Press:  06 December 2024

Davide Piffer*
Affiliation:
Independent researchers
Emil O.W. Kirkegaard
Affiliation:
Independent researchers
*
Corresponding author: Davide Piffer; Email: [email protected]
Get access

Abstract

We analyzed whole-genome sequencing (WGS) data from 51 populations and combined WGS and array data from 89 populations. Multiple types of polygenic scores (PGS) were employed, derived from multi-ancestry, between-family genome-wide association study (GWAS; MIX-Height), European-ancestry, between-family GWAS (EUR-Height), and European-ancestry siblings GWAS (SIB-Height). Our findings demonstrate that both genetic and environmental factors significantly influence adult body height between populations. Models that included both genetic and environmental predictors best explained population differences in adult body height, with the MIX-Height PGS and environmental factors (Human Development Index [HDI] + per capita caloric intake) achieving an R2 of .83. Our findings shed light on Deaton’s ‘African paradox’, which noted the relatively tall stature of African populations despite poor nutrition and childhood health. Contrary to Deaton’s hypotheses, we demonstrate that both genetic differences and environmental factors significantly influence body height in countries with high infant mortality rates. This suggests that the observed tall stature in African populations can be attributed, in part, to a high genetic predisposition for body height. Furthermore, tests of divergent selection based on the QST (i.e., standardized measure of the genetic differentiation of a quantitative trait among populations) and FST (neutral marker loci) measures exceeded neutral expectations, reaching statistical significance (p < .01) with the MIX-Height PGS but not with the SIB-Height PGS. This result indicates potential selective pressures on body height-related genetic variants across populations.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Society for Twin Studies

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alkan, C., Kavak, P., Somel, M., Gokcumen, O., Ugurlu, S., Saygi, C., Dal, E., Bugra, K., Güngör, T., Sahinalp, S. C., Özören, N., & Bekpen, C. (2014). Whole genome sequencing of Turkish genomes reveals functional private alleles and impact of genetic interactions with Europe, Asia and Africa. BMC Genomics, 15, 963. https://doi.org/10.1186/1471-2164-15-963 CrossRefGoogle ScholarPubMed
Allen, J. A. (1877). The influence of Physical conditions in the genesis of species. Radical Review, 1, 108140.Google Scholar
Arbisser, I. M., & Rosenberg, N. A. (2020). FST and the triangle inequality for biallelic markers. Theoretical Population Biology, 133, 117129. https://doi.org/10.1016/j.tpb.2019.05.003 CrossRefGoogle ScholarPubMed
Berg, J. J., & Coop, G. (2014). A population genetic signal of polygenic adaptation. PLoS Genetics, 10, e1004412. https://doi.org/10.1371/journal.pgen.1004412 CrossRefGoogle ScholarPubMed
Bergmann, C. (1848). Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Größe [On the proportions of heat economy of animals to their size). Vandenhoeck & Ruprecht.Google Scholar
Bivand, R., & Wong, D. (2018). Comparing implementations of global and local indicators of spatial association. TEST, 27, 716748. https://doi.org/10.1007/s11749-018-0599-x CrossRefGoogle Scholar
Bjornstad, O. N. (2022). ncf: Spatial Covariance Functions. R package version 1.3-2, https://github.com/objornstad/ncf Google Scholar
Blanco-Sánchez, M., Ramírez-Valiente, J. A., Ramos-Muñoz, M., Pías, B., Franks, S. J., Escudero, A., & Matesanz, S. (2024). Range-wide intraspecific variation reflects past adaptation to climate in a gypsophile Mediterranean shrub. Journal of Ecology, 112, 15331549. https://doi.org/10.1111/1365-2745.14322 CrossRefGoogle Scholar
Blanquart, F., Kaltz, O., Nuismer, S. L., & Gandon, S. (2013). A practical guide to measuring local adaptation. Ecology Letters, 16, 11951205. https://doi.org/10.1111/ele.12150 CrossRefGoogle Scholar
Chali, D. (1995). Anthropometric measurements of the Nilotic tribes in a refugee camp. Ethiopian Medical Journal, 33, 211217.Google Scholar
Chang, C. C., Chow, C. C., Tellier, L. C. A. M., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015) Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4, 7. https://doi.org/10.1186/s13742-015-0047-8 CrossRefGoogle Scholar
Checkley, W., Buckley, G., Gilman, R. H., Assis, A. M., Guerrant, R. L., Morris, S. S., Mølbak, K., Valentiner-Branth, P., Lanata, C. F., & Black, R. E. (2008). Multi-country analysis of the effects of diarrhoea on childhood stunting. International Journal of Epidemiology, 37, 816830. https://doi.org/10.1093/ije/dyn099 CrossRefGoogle ScholarPubMed
Corsini, C. A. (2009). Statura, salute e migrazioni: le leve militari italiane. Forum Edizioni Google Scholar
Das, S., Forer, L., Schönherr, S., Sidore, C., Locke, A. E., Kwong, A., Vrieze, S. I., Chew, E. Y., Levy, S., McGue, M., Schlessinger, D., Stambolian, D., Loh, P.-R., Iacono, W. G., Swaroop, A., Scott, L. J., Cucca, F., Kronenberg, F., Boehnke, M., … Fuchsberger, C. (2016). Next-generation genotype imputation service and methods. Nature Genetics, 48, 12841287.CrossRefGoogle ScholarPubMed
Deaton, A. (2007). Height, health, and development. Proceedings of the National Academy of Sciences of the United States of America, 104, 1323213237. https://doi.org/10.1073/pnas.0611500104 CrossRefGoogle ScholarPubMed
Fuchsberger, C., Abecasis, G. R., & Hinds, D. A. (2014). minimac2: Faster genotype imputation. Bioinformatics, 31, 782784. https://doi.org/10.1093/bioinformatics/btu704 CrossRefGoogle ScholarPubMed
Grasgruber, P., Sebera, M., Hrazdíra, E., Cacek, J., & Kalina, T. (2014). Major correlates of male height: A study of 105 countries. Economics & Human Biology, 15, 81100. https://doi.org/10.1016/j.ehb.2014.07.002 CrossRefGoogle Scholar
Guo, J., Wu, Y., Zhu, Z., Zheng, Z., Trzaskowski, M., Zeng, J., Robinson, M. R., Visscher, P. M., & Yang, J. (2018). Global genetic differentiation of complex traits shaped by natural selection in humans. Nature Communications, 9, 1865. https://doi.org/10.1038/s41467-018-04191-y CrossRefGoogle Scholar
Howe, L. J., Nivard, M. G., Morris, T. T., Hansen, A. F., Rasheed, H., Cho, Y., Chittoor, G., Ahlskog, R., Lind, P. A., Palviainen, T., van der Zee, M. D., Cheesman, R., Mangino, M., Wang, Y., Li, S., Klaric, L., Ratliff, S. M., Bielak, L. F., Nygaard, M., Giannelis, A., … Davies, N. M. (2022). Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nature Genetics, 54, 581592. https://doi.org/10.1038/s41588-022-01062-7 CrossRefGoogle ScholarPubMed
Hsu, J. S., Wu, D. C., Shih, S. H., Liu, J. F., Tsai, Y. C., Lee, T. L., Chen, W. A., Tseng, Y. H., Lo, Y. C., Lin, H. Y., Chen, Y. C., Chen, J. Y., Chou, T. H., Chang, D. T., Su, M. W., Guo, W. H., Mao, H. H., Chen, C. Y., & Chen, P. L. (2023). Complete genomic profiles of 1496 Taiwanese reveal curated medical insights. Journal of Advanced Research. Advance online publication. https://doi.org/10.1016/j.jare.2023.12.018 CrossRefGoogle Scholar
Hubert, L. J., Golledge, R. G., & Costanzo, C. M. (1981). Generalized procedures for evaluating spatial autocorrelation. Geographical Analysis, 13, 224233.CrossRefGoogle Scholar
Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583589. https://doi.org/10.1093/genetics/132.2.583 CrossRefGoogle ScholarPubMed
Kaja, E., Lejman, A., Sielski, D., Sypniewski, M., Gambin, T., Dawidziuk, M., Suchocki, T., Golik, P., Wojtaszewska, M., Mroczek, M., Stępień, M., Szyda, J., Lisiak-Teodorczyk, K., Wolbach, F., Kołodziejska, D., Ferdyn, K., Dąbrowski, M., Woźna, A., Żytkiewicz, M., Bodora-Troińska, A., … Sztromwasser, P. (2022). The Thousand Polish Genomes – A Database of Polish Variant Allele Frequencies. International Journal of Molecular Sciences, 23, 4532. https://doi.org/10.3390/ijms23094532 CrossRefGoogle ScholarPubMed
Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alfoldi, J., Wang, Q., Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581, 434443. https://doi.org/10.1038/s41586-020-2308-7 CrossRefGoogle ScholarPubMed
Latta, R. G. (1998). Differentiation of allelic frequencies at quantitative trait loci affecting locally adaptive traits. The American Naturalist, 151, 283292.CrossRefGoogle ScholarPubMed
Le Corre, V., & Kremer, A. (2003). Genetic variability at neutral markers, quantitative trait loci and trait in a subdivided population under selection. Genetics, 164, 12051219.CrossRefGoogle Scholar
Le Corre, V., & Kremer, A. (2012). The genetic differentiation at quantitative trait loci under local adaptation. Molecular Ecology, 21, 15481566. https://doi.org/10.1111/j.1365-294X.2012.05479.x CrossRefGoogle Scholar
Lee, J., Lee, J., Jeon, S., Lee, J., Jang, I., Yang, J. O., Park, S., Lee, B., Choi, J., Choi, B. O., Gee, H. Y., Oh, J., Jang, I. J., Lee, S., Baek, D., Koh, Y., Yoon, S. S., Kim, Y. J., Chae, J. H., Park, W. Y., … Choi, M. (2022). A database of 5305 healthy Korean individuals reveals genetic and clinical implications for an East Asian population. Experimental & Molecular Medicine, 54, 18621871. https://doi.org/10.1038/s12276-022-00871-4 CrossRefGoogle ScholarPubMed
Legendre, P., & Legendre, L. (1998). Numerical ecology (2nd ed.). Elsevier.Google Scholar
Leinonen, T., McCairns, R. J., O’Hara, R. B., & Merilä, J. (2013). Q(ST)-F(ST) comparisons: Evolutionary and ecological insights from genomic heterogeneity. Nature Reviews Genetics, 14, 179190. https://doi.org/10.1038/nrg3395 CrossRefGoogle ScholarPubMed
Li, Z., Löytynoja, A., Fraimout, A., & Merilä, J. (2019). Effects of marker type and filtering criteria on QST-FST comparisons. Royal Society Open Science, 6, 190666. https://doi.org/10.1098/rsos.190666 CrossRefGoogle Scholar
Lu, G., Hu, Y., Yang, Z., Zhang, Y., Lu, S., Gong, S., Li, T., Shen, Y., Zhang, S., & Zhuang, H. (2022). Geographic latitude and human height – Statistical analysis and case studies from China. Arabian Journal of Geosciences, 15, 335. https://doi.org/10.1007/s12517-021-09335-x CrossRefGoogle Scholar
Ma, X. F., Hall, D., Onge, K. R., Jansson, S., & Ingvarsson, P. K. (2010). Genetic differentiation, clinical variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway. Genetics, 186, 10331044. https://doi.org/10.1534/genetics.110.1208734 CrossRefGoogle Scholar
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209220.Google Scholar
Martorell, R., & Zongrone, A. (2012). Intergenerational influences on child growth and undernutrition. Paediatric and Perinatal Epidemiology, 26, 302314.CrossRefGoogle ScholarPubMed
Merilä, J., & Crnokrak, P. (2001). Comparison of genetic differentiation at marker loci and quantitative traits: Natural selection and genetic differentiation. Journal of Evolutionary Biology, 14, 892903. https://doi.org/10.1046/j.1420-9101.2001.00348.x CrossRefGoogle Scholar
Mielke, P. W. (1979). On asymptotic non-normality of null distributions of MRPP statistics. Communications in Statistics—Theory and Methods, A8, 15411550.CrossRefGoogle Scholar
Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37, 1723. https://doi.org/10.2307/2332142 CrossRefGoogle ScholarPubMed
Naslavsky, M. S., Scliar, M. O., Yamamoto, G. L., Wang, J. Y. T., Zverinova, S., Karp, T., Nunes, K., Ceroni, J. R. M., de Carvalho, D. L., da Silva Simões, C. E., Bozoklian, D., Nonaka, R., Dos Santos Brito Silva, N., da Silva Souza, A., de Souza Andrade, H., Passos, M. R. S., Castro, C. F. B., Mendes-Junior, C. T., Mercuri, R. L. V., – Zatz, M. (2022). Whole-genome sequencing of 1,171 elderly admixed individuals from Brazil. Nature Communications, 13, 1004. https://doi.org/10.1038/s41467-022-28648-3 CrossRefGoogle ScholarPubMed
NCD Risk Factor Collaboration (NCD-RisC). (2020). Height and body-mass index trajectories of school-aged children and adolescents from 1985 to 2019 in 200 countries and territories: A pooled analysis of 2181 population-based studies with 65 million participants. Lancet, 396, 15111524. https://doi.org/10.1016/S0140-6736(20)31859-6 CrossRefGoogle Scholar
Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S. M., Sidorenko, J., Kweon, H., Goldman, G., Gjorgjieva, T., Jiang, Y., Hicks, B., Tian, C., Hinds, D. A., Ahlskog, R., Magnusson, P. K. E., Oskarsson, S., Hayward, C., Campbell, A., Porteous, D. J., … Young, A. I. (2022). Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals. Nature Genetics, 54, 437449. https://doi.org/10.1038/s41588-022-01016-z CrossRefGoogle ScholarPubMed
1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526, 6874. https://doi.org/10.1038/nature15393 CrossRefGoogle Scholar
Piffer, D. (2013). Factor analysis of population allele frequencies as a simple, novel method of detecting signals of recent polygenic selection: The example of educational attainment and IQ. Mankind Quarterly, 54, 168200. https://doi.org/10.46469/mq.2013.54.2.3 CrossRefGoogle Scholar
Piffer, D. (2015). A review of intelligence GWAS hits: Their relationship to country IQ and the issue of spatial autocorrelation. Intelligence, 53, 4350. https://doi.org/10.1016/j.intell.2015.08.008 CrossRefGoogle Scholar
Piffer, D., & Kirkegaard, E. O. W. (2024). Evolutionary trends of polygenic scores in European populations from the paleolithic to modern Times. Twin Research and Human Genetics, 27, 3049. https://doi.org/10.1017/thg.2024.8 CrossRefGoogle Scholar
Prüss-Üstün, A., Bos, R., Gore, F., & Bartram, J. (2014). Safer water, better health: Costs, benefits and sustainability of interventions to protect and promote health. World Health Organization.Google Scholar
Rentoft, M., Svensson, D., Sjödin, A., Olason, P. I., Sjöström, O., Nylander, C., Osterman, P., Sjögren, R., Netotea, S., Wibom, C., Cederquist, K., Chabes, A., Trygg, J., Melin, B. S., & Johansson, E. (2019). A geographically matched control population efficiently limits the number of candidate disease-causing variants in an unbiased whole-genome analysis. PLoS One, 14, e0213350. https://doi.org/10.1371/journal.pone.0213350 CrossRefGoogle Scholar
Roser, M., Ritchie, H., & Rosado, P. (2013). Food supply. https://ourworldindata.org/food-supply Google Scholar
Silventoinen, K., Sammalisto, S., Perola, M., Boomsma, D. I., Cornes, B. K., Davis, C., Dunkel, L., De Lange, M., Harris, J. R., Hjelmborg, J. V., Luciano, M., Martin, N. G., Mortensen, J., Nisticò, L., Pedersen, N. L., Skytthe, A., Spector, T. D., Stazi, M. A., Willemsen, G., & Kaprio, J. (2003). Heritability of adult body height: A comparative study of twin cohorts in eight countries. Twin Research, 6, 399408. https://doi.org/10.1375/twin.6.5.399 CrossRefGoogle ScholarPubMed
Sokal, R. R. (1979). Testing statistical significance of geographic variation patterns. Systematic Zoology, 28, 227231.CrossRefGoogle Scholar
Sokal, R. R., Jacquez, G. M., & Wooten, M. C. (1989). Spatial autocorrelation analysis of migration and selection. Genetics, 121, 845855, https://doi.org/10.1093/genetics/121.4.845 CrossRefGoogle ScholarPubMed
Spitze, K. (1993). Population structure in Daphnia obtusa: Quantitative genetic and allozymic variation. Genetics, 135, 367374. https://doi.org/10.1093/genetics/135.2.367 CrossRefGoogle Scholar
Stulp, G., Barrett, L., Tropf, F. C., & Mills, M. (2015). Does natural selection favour taller stature among the tallest people on earth? Proceedings of the Royal Society B: Biological Sciences, 282, 20150211. https://doi.org/10.1098/rspb.2015.0211 CrossRefGoogle ScholarPubMed
Stulp, G., Bonnell, T., & Barrett, L. (2023). Simulating the evolution of height in the Netherlands in recent history. The History of the Family, 28, 434456. https://doi.org/10.1080/1081602X.2023.2192193 CrossRefGoogle Scholar
Turchin, M. C., Chiang, C. W., Palmer, C. D., Sankararaman, S., Reich, D., Genetic Investigation of ANthropometric Traits (GIANT) Consortium, & Hirschhorn, J. N. (2012). Evidence of widespread selection on standing variation in Europe at height-associated SNPs. Nature Genetics, 44, 10151019. https://doi.org/10.1038/ng.2368 CrossRefGoogle ScholarPubMed
United Nations Development Programme. (2024). Human Development Report 2023-24: Breaking the gridlock: Reimagining cooperation in a polarized world.Google Scholar
Victora, C. G., Adair, L., Fall, C., Hallal, P. C., Martorell, R., Richter, L., & Sachdev, H. S. (2008). Maternal and child undernutrition: Consequences for adult health and human capital. The Lancet, 371, 340357. https://doi.org/10.1016/S0140-6736(07)61692-4 CrossRefGoogle ScholarPubMed
Whitlock, M. C. (2008). Evolutionary inference from QST. Molecular Ecology, 17, 18851896. https://doi.org/10.1111/j.1365-294X.2008.03712.x CrossRefGoogle ScholarPubMed
Whitlock, M. C., & Guillaume, F. (2009). Testing for spatially divergent selection: comparing QST to FST. Genetics, 183, 10551063. https://doi.org/10.1534/genetics.108.099812 CrossRefGoogle Scholar
Yengo, L., Vedantam, S., Marouli, E., Sidorenko, J., Bartell, E., Sakaue, S., Graff, M., Eliasen, A. U., Jiang, Y., Raghavan, S., Miao, J., Arias, J. D., Graham, S. E., Mukamel, R. E., Spracklen, C. N., Yin, X., Chen, S. H., Ferreira, T., Highland, H. H., & Hirschhorn, J. N. (2022). A saturated map of common genetic variants associated with human height. Nature, 610, 704712. https://doi.org/10.1038/s41586-022-05275-y CrossRefGoogle Scholar
Yoo, S. K., Kim, C. U., Kim, H. L., Kim, S., Shin, J. Y., Kim, N., Yang, J. S. W., Lo, K. W., Cho, B., Matsuda, F., Schuster, S. C., Kim, C., Kim, J. I., & Seo, J. S. (2019). NARD: whole-genome reference panel of 1779 Northeast Asians improves imputation accuracy of rare and low-frequency variants. Genome Medicine, 11, 64. https://doi.org/10.1186/s13073-019-0677-z CrossRefGoogle ScholarPubMed
Ziyatdinov, A., Torres, J., Alegre-Díaz, J., Backman, J., Mbatchou, J., Turner, M., Gaynor, S. M., Joseph, T., Zou, Y., Liu, D., Wade, R., Staples, J., Panea, R., Popov, A., Bai, X., Balasubramanian, S., Habegger, L., Lanche, R., Lopez, A., ¼ Tapia-Conyer, R. (2023). Genotyping, sequencing and analysis of 140,000 adults from Mexico City. Nature, 622, 784793. https://doi.org/10.1038/s41586-023-06595-3 CrossRefGoogle Scholar