No CrossRef data available.
Article contents
36. Commission De La Theorie Des Atmospheres Stellaires
Published online by Cambridge University Press: 16 November 2021
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Reports of Commissions
- Information
- Transactions of the International Astronomical Union , Volume 12 , Issue 1: Reports on Astronomy , 1965 , pp. 599 - 610
- Copyright
- Copyright © Academic Press 1965
References
Bibliography
I. Books, Proceedings of Colloquia
1.
Transfer of Radiation in Stellar Atmospheres (3rd colloquium on the Theory of Stellar Atmospheres), ed. by C., de Jager and A. B., Underhill; J. Quant. Spectr. Rad. Trans., 3, 96, 1963.Google Scholar
2.
Proceedings of the fourth symposium on cosmical gas dynamics: ‘Aerodynamic phenomena in stellar atmospheres’; ed. by R. N. Thomas, ; IAU Symposium no. 12, 1961.Google Scholar
3. Les spectres des astres dans l’ultraviolet lointain. ioème Coll. intern, d’astrophys. de Liège, 11-14 July 1960, in Mém. Soc. R. Sci. Liège; (5), 4, 1961.Google Scholar
4.
Stellar Atmospheres, ed. by Greenstein, J. L.. (Vol. 6 of Stars and Stellar Systems, Univ. of Chicago Press).Google Scholar
5.
Invariant imbedding and radiative transfer in slabs of finite thickness, ed. by R. Bellman, R. E.
Kalaba, and Marcia C., Prestrud.
American Elsevier Publ. Co. Inc., New York, 1963.Google Scholar
6.
Invariant imbedding and time-dependent transport process, ed. by R., Bellman
H. H., Kagiwada
R. E., Kalaba and Marcia C., Prestrud.
American Elsevier Publ. Co. Inc., New York.Google Scholar
7.
Wing, G. M.
An Introduction to Transport Theory, John Wiley and Sons, New York, 1963.Google Scholar
8.
Jager C., de
Stroenie i Dinamika Atmosfery Solnca, Moskva, Isd. Inostrannoi Lit., 1962.Google Scholar
13.
Aller, L. H.
The atmospheres of the Sun and stars, 2nd ed. N., York, Ronald Press, 1963.Google Scholar
1.
Anselone, P. M.
Convergence of Chandrasekhar’s method for inhomogeneous transfer problems, jr. Math. Mech., 10, 537, 1961.Google Scholar
3.
Aroesty, J., Bellman, R., Kalaba, R. E., Ueno, S.
Invariant imbedding and rarefied gas dynamics. The RAND Corporation, RM-3497-ARPA. Proc. nat. Acad. Sci. U.S.A., 50, 222, 1963.Google Scholar
4.
Avrett, E. H., Krook, M.
A rapidly convergent iterative procedure for the calculation of the relation in a stellar atmosphere. J. Quant. Spectr. Rad. Trans., 3, 107, 1963.Google Scholar
5.
Avrett, E. H., Loeser, R.
A simple and accurate method for the evaluation of the Milne integrals. J. Quant. Spectr. Rad. Trans., 3, 201, 1963.Google Scholar
6.
Bellman, R., Kalaba, R. E., Ueno, S.
On the diffuse reflection of parallel rays by an inhomogeneous flat layer as a limiting process. The RAND Corporation, RM-2913-ARPA, 1962. J. Math. Analys, and Appl., 7, 91, 1963.Google Scholar
7.
Bellman, R., Kalaba, R. E., Ueno, S. Invariant imbedding and noncoherent scattering in a finite inhomogeneous atmosphere. The RAND Corporation, RM-zgoz-ARPA,
1962.Google Scholar
8.
Bellman, R., Kalaba, R. E., Ueno, S. Invariant imbedding and time-dependent scattering of light in a one-dimensional medium. The RAND Corporation, RM-3603-ARPA, 1963.Google Scholar
9.
Böhm-Vitense, E.
Berechnung der Temperaturschichtung nichtgrauer Atmosphären im Strahlungsgleichgewicht. Z. Astrophys., 57, 241, 1963.Google Scholar
10.
Busbridge, I. W.
On inhomogeneous stellar atmospheres. Astrophys. J., 133, 198, 1961.Google Scholar
11.
Carrier, G. F., Avrett, E. H.
A non-gray radiative transfer problem. Astrophys. J., 134, 469, 1961.Google Scholar
12.
Feautrier, P.
Construction d’àtmosphères-modèles. C.R. Acad. Sci. Paris, 253, 1313, 1961.Google Scholar
13.
Feautrier, P.
Solutions à flux constant de l’équation de transfert. J. Quant. Spectr. Rad. Trans., 3, 103, 1963.Google Scholar
14.
Feautrier, P.
La détermination des températures de surface des modèles d’atmosphères. C.R. Acad. Sci. Paris, 254, 824, 1962.Google Scholar
15.
Gingerich, O.
Krook’s iterative procedure for the temperature distribution in model stellar atmospheres. Astr. J., 67, 272, 1962.Google Scholar
16.
Grosjean, C.C. A new approximate one-velocity theory for treating both isotropic and anisotropie multiple scattering problems. Part I. Infinite homogeneous scattering media. Verh. Kon. VI. Ak. Wet. Belgie, no. 70, 1963.Google Scholar
17.
Gussmann, E. A.
Bemerkungen zur Eddington-Barbierschen Näherungslösung des Strahlungstransportes. Monatsber. Deutsch. Akad. Wiss. Berlin, 3, 355, 1961= Mitt. Astrophys. Obs. Potsdam 98.Google Scholar
18.
Holweger, H., Unsöld, A.
Die Genauigkeit von Sternatmosphären-Modellen im Strahlungsgleichgewicht. Z. Astrophys., 57, 235, 1963.Google Scholar
20.
Hulst H. C., van de A new look at multiple scattering. Goddard Space Flight Center, NASA, 1963.Google Scholar
21.
Hummer, D. G.
Numerical solution of the transfer equation with noncoherent scattering.
J. Quant. Spectr. Rad. Trans., 3, 101, 1963.Google Scholar
22.
Ivanov, V. V.
La diffusion du rayonnement de résonance dans les atmosphères des étoiles et nébuleuses. (in Russian). Astr. Zu., 39, 1020, 1962.Google Scholar
24.
Kegel, W. H.
Zur numerischen Berechnung der Intergrale f(x)Kn(x)dx
. Z. Astrophys., 54, 34, 1962.Google Scholar
26.
Račkovskij, D. N.
A system of radiative transfer equations in the presence of a magnetic field. Izv. Krym. astrofiz. Obs., 26, 63, 1961.Google Scholar
29.
Stepanov, V. E.
Les équations de l’équilibre radiatif dans les atmosphères des étoiles magnétiques, (in Russian). Izv. Krym. astrofiz. Obs., 27, 140, 1962.Google Scholar
30.
Stone, P. H., Gaustad, J. E.
The application of a moment method to the solution of nongray radiative transfer problems. Astrophys. J., 134, 456, 1961.Google Scholar
31.
Swamy, K. S. K., Kushwaha, R. S.
Opacity means and stellar atmospheres. Proc. Nat. Inst. Sci. India (A), 27, 453, 1961.Google Scholar
32.
Ueno, S.
Stochastic equations in radiative transfer by invariant imbedding method. J. Math. Analys, and Appl., 2, 217, 1961.Google Scholar
33.
Ueno, S.
The invariant imbedding method for transport problems. II. Resolvent in photon diffusion equation. J. Math. Analys, and Appl., 3, 361, 1961.Google Scholar
34.
Ueno, S.
On the S- and T-functions of S. Chandrasekhar in arbitrary stratification. J. Math. Analys, and Appl., 4, 9, 1962.Google Scholar
35.
Ueno, S.
On the time-dependent principle of invariance in a semi-infinite atmosphere. J. Math. Analys, and Appl., 4, 1, 1962.Google Scholar
36.
Ueno, S.
The probabilistic method for problems of radiative transfer. XIII. Diffusion matrix. J. Math. Analys, and Appl., 4, 21, 1962.Google Scholar
37.
Ueno, S.
On the diffusion matrix of radiative transfer. Ann. Astrophys., 24, 352, 1961.Google Scholar
38.
Ueno, S. On the polarity of the scattering function in an inhomogeneous flat layer. The RAND Corporation, RM-2903-ARPA, 1962.Google Scholar
39.
Ueno, S. The probabilistic method for problems of radiative transfer. XII. The Markov property of radiative transfer and of neutron diffusion. The RAND Corporation, RM-2936-ARPA, 1962.Google Scholar
40.
Uesugi, A.
On the generalized scattering and transmission functions in radiative transfer. Publ. astr. Soc. Japan, 15, 266, 1963.Google Scholar
41.
Uesugi, A.
An interpretation of photon diffusion process. Ann. Astrophys., 26, 263, 1963.Google Scholar
42.
Underhill, A. B.
Computing techniques for radiative transfer problems. J. Quant. Spectr., Rad. Trans., 3, 197, 1963.Google Scholar
43.
Underhill, A. B.
The significance of model atmosphere computations regarding radiative transfer. J. Quant. Spectr. Rad. Trans., 3, 113, 1963.Google Scholar
44.
Underhill, A. B.
A program for computing early-type model atmospheres and testing the flux integral. Publ. Dom. astroph. Obs., 11, 23, 1962.Google Scholar
45.
Underhill, A. B.
Some methods for computing model stellar atmospheres. Quart. J. R. astr. Soc, 3, 7, 1961.Google Scholar
46.
Unno, W.
A theory for non-grey atmospheres. II. Publ. astr. Soc. Japan, 13, 66, 1961 = Univ. Tokyo Contr. Dep. Astr. no. 12.Google Scholar
47.
Weidemann, V.
Strahlungsaustausch in nichtgrauen Atmosphären. Z. Astrophys., 52, 132, 1961.Google Scholar
48.
Wilson, P. R.
Radiative transfer in media exhibiting large horizontal variations. Mon. Not. RAS, 124, 383, 1962.Google Scholar
1.
Bhatnagar, M. S., Kushwaha, R. S.
Propagation of intense shock waves in stellar envelopes. Ann. Astrophys., 24, 211, 1961.Google Scholar
2.
Bhatnagar, M. S., Kushwaha, R. S.
Mechanical decay of a spherical shock wave in a stellar atmosphere. Proc. Nat. Inst. Sci. India (A), 27, 441, 1961.Google Scholar
3.
Bhatnagar, M. S., Kushwaha, R. S.
Decay of a shock wave in a stellar atmosphere. Ann. Astrophys., 25, 410, 1962.Google Scholar
4.
Biermann, R., Lüst, R. General aspects of non-thermal phenomena. Mém. Soc. R. Sci. Liège 5ème série, tome IV, 1961.Google Scholar
5.
Böhm, K. H.
Die Temperaturschwankungen in der Sonnengranulation. Z. Astrophys., 54, 217, 1962.Google Scholar
6.
Böhm, K. H.
Unstable Modes in the Solar Hydrogen Convection Zone. Astrophys. J., 137, 881, 1963.Google Scholar
7.
Böhm, K. H.
Strömungsformen verschiedener vertikaler Wellenlängen in der solaren Wasserstoffkonvektionszone. Z. Astrophys., 57, 265, 1963.Google Scholar
8.
Gorbatzky, V. G.
Rayonnement de l’enveloppe d’une nova derrière le front d’une onde de choc, (in Russian). Vestn. Leningrad. Univ., 17, 112, 1962.Google Scholar
9.
Holweger, H.
Ausbreitung magnetohydrodynamischer Wellen. Z. Astrophys., 56, 269, 1963.Google Scholar
11.
de, Jager C.
Energy transport in a sunspot. J. Quant. Spectr. Rad. Trans., 3, 181, 1963.Google Scholar
12.
Kahn, F. D.
Sound waves trapped in the solar atmosphere. II. Astrophys. J., 135, 547, 1962.Google Scholar
14.
Kato, S.
The effect of the variation of the super-adiabatic temperature gradient on the convective motion. Publ. astr. Soc. Japan, 13, 410, 1961.Google Scholar
15.
Kato, S.
On the Generation of Acoustic Noise from Turbulent Atmosphere. II. Publ. astr. Soc. Japan, 15, 204, 1963.Google Scholar
16.
Kato, S.
The Scattering of Sound Waves in Atmospheric Turbulent Media. Publ. astr. Soc. Japan, 15, 216, 1963.Google Scholar
19.
Kogure, T., Osaki, T.
Stationary Shock Waves in a Plane Stellar Atmosphere. I. The Structure. Publ. astr. Soc. Japan, 13, 250, 1961.Google Scholar
20.
Kogure, T.
Stationary Shock Waves in a Plane Stellar Atmosphere. II. The Progagation. Publ. astr. Soc. Japan., 14, 247, 1962.Google Scholar
21.
Kogure, T., Osaki, T.
Propagation of Shock Waves in Inhomogeneous Medium. Publ. astr. Soc. Japan, 14, 254, 1961.Google Scholar
22.
Krishna Swamy, K. S., Kushwaha, R. S.
Convection Zones in stellar atmospheres. Astrophys. J., 135, 802, 1962.Google Scholar
23.
Krishna Swamy, K. S., Kushwaha, R. S.
Adiabatic gradient in stellar atmospheres
. Proc. Nat. Acad. Sci. India (A), 32, 98, 1962.Google Scholar
24.
Mihaljan, J. M.
A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid. Astrophys. J.,$$$ 136, 1126, 1962.Google Scholar
25.
Nadjosin, D. K.
On the existence of an outer convective zone. Astr. Zu., 38, 634, 1961.Google Scholar
26.
Roberts, P. H., Boardman, A. D.
The effect of a vertical magnetic field on the propagation of gravity waves along the plane surface of semi-infinite viscous, electrically conducting fluid. Astrophys. J., 135, 552, 1962.Google Scholar
27.
Schatzman, E.
Spherically-symmetric motions in stellar atmospheres. B.—The propagation of a shock-wave in an atmosphere of varying density. Nuov. Cim. Suppl, 22, 209, 1961.Google Scholar
28.
Shimooda, H.
On the Turbulence and Hydromagnetic Turbulence in Astrophysics.(Second paper). Publ. astr. Soc. Japan, 14, 12, 1962.Google Scholar
29.
Simoda, M.
On the Surface Condition for Stellar Models with Convection Envelope. Publ. astr. Soc. Japan, 13, 424, 1961.Google Scholar
30.
Skalafuris, A., Whitney, C. A.
Radiative cooling behind shock fronts in stellar atmospheres. Ann. Astrophys., 24, 420, 1961.Google Scholar
31.
Souffrin, P.
Sur lxe critère de Schwarzschild. CR. Acad. Sci. Paris,> 252, 2073, 1961 = Contr. Inst. Astrophys. Paris (A) no. 269.+252,+2073,+1961+=+Contr.+Inst.+Astrophys.+Paris+(A)+no.+269.>Google Scholar
32.
Souffrin, P.
Modèle de zone convective Stellaire. C.R. Acad. Sci. Paris, 252, 2997, 1961 = Contr. Inst. Astrophys. Paris (A) no. 272.Google Scholar
33.
Spiegel, E. A., Unno, W.
On Convective Growth-rates in a Polytropic Atmosphere
. Publ. astr. Soc. Japan, 14, 28, 1962.Google Scholar
34.
Swamy, K. S. K.
Adiabatic gradient for ionizable matter and radiation. Astrophys. J., 134, 1017, 1961.Google Scholar
35.
Uchida, Y., On the Formation of Solar Chromospheric Spicules and Flare-Surges. Publ. astr. Soc. Japan, 13, 321, 1961.Google Scholar
36.
Underbill, A. B.
General summary of results on ‘astronomical turbulence’ in stellar atmospheres. Nuov. Cim. Suppl., 22, 69, 1961.Google Scholar
37.
Unno, W.
On the applicability of the linear theory to the problem of convection in stellar atmospheres. Publ. astr. Soc. Japan, 13, 276, 1961.Google Scholar
38.
Unno|W., Kato, S.
On the generation of acoustic noise from the turbulent atmosphere. I. Publ. astr. Soc. Japan, 14, 417, 1962.Google Scholar
39.
Unsöld, A.
Über die Überhitzung der Chromosphäre durch Dissipation turbulenter Strömungsenergie. Z. Astrophys., 52, 300, 1961.Google Scholar
40.
Whitney, C. A.
The duration of line-splitting in W Virginis. Astrophys. J., 136, 674, 1962.Google Scholar
41.
Yamaguchi, S.
On turbulent thermal convection. Derivation of spectrum equations and the spectrum in inviscid and non-conductive case. Publ. astr. Soc. Japan, 15, 411, 1963.Google Scholar
2.
Deutsch, A., Germain, P.
Spherically-symmetric motions in stellar atmospheres. C.—Non-catastrophic mass-loss from stars. Nuov. Cim. Suppl., 22, 238, 1961.Google Scholar
3.
Dokucaev, V. P.
L’instabilité magnétohydrodynamique des courants corpusculaires solaires, (in Russian). Astr. Zu., 39, 1009, 1962.Google Scholar
6.
Hayashi, C., Hoshi, R.
The outer envelope of giant stars with surface convection zone. Publ. astr. Soc. Japan, 13, 442, 1961.Google Scholar
7.
Houziaux, L.
Ionization and excitation of neutral oxygen in the vicinity of hot stars. Z. Astrophys., 51, 95, 1961.Inst. Astrophys. Univ. Liège. Coll. 8° no. 417.Google Scholar
9.
Kogure, T.
The radiation field and theoretical Balmer decrements of Be Stars. III. Publ. astr. Soc. Japan, 13, 335, 1961.Google Scholar
13.
Schatzman, E.
On the acceleration of particles in shock fronts. Ann. Astrophys., 26, 234, 1963.Google Scholar
1.
Athay, R. G.
The Doppler cores of strong Fraunhofer lines. Astrophys. J., 134, 765, 1961.Google Scholar
2.
Delys, C.
Coutrez, R., Schatzman, E.
Dissymétrie des raies du spectre des céphéides.
Ann. Astrophys., 25, 416, 1962.Google Scholar
3.
Griem, H. R., Kolb, A.C., Shen, K. Y.
Stark profile calculations for the Hβ line of hydrogen. Astrophys. J., 135,
272, 1962.Google Scholar
4.
Huang, S.-S.
Geometric broadening of stellar spectral lines.
Astrophys. J., 133, 130, 1961.Google Scholar
5.
Sen, K. K., Lee, W.-M.
The broadening and polarization of spectral lines due to the thermal Doppler effect in an electron scattering atmosphere. Publ. astr. Soc. Japan, 13, 263, 1961.Google Scholar
1.
Cayrel, R., Piron, H.
Calcul de la fonction source pour un atome à deux niveaux plus le continu dans la photosphère solaire. J. Quant. Spectr. Rad. Trans., 3, 121, 1963.Google Scholar
2.
Cuny, Y.
Influence des écarts à l’équilibre thermodynamique local de l’hydrogène sur le spectre continu du Soleil et des étoiles. J. Quant. Spectr. Rad. Trans., 3, 129, 1963.Google Scholar
3.
Dumont, S.
Remarques sur les approximations d’Eddington. C.R. Acad. Sci. Paris, 252, 2670, 1961.Google Scholar
4.
Dumont, S.
La fonction source: difficultés et solutions partielles. J. Quant. Spectr. Rad. Trans., 3, 125, 1963.Google Scholar
5.
Gökdogan, N., Hotinli, M., Pecker, J.-C.
Ecarts à l’équilibre et abondances dans les photosphères solaires et stellaires. VII. Les Ecarts à l’ETL dans le cas du Fer. Ann. Astr., 25, 324, 1962.Google Scholar
7.
Ismailov, A. A.
Izv. Akad. Nauk Azerbajdz. SSR. Ser. fiz.-matem, nauk., no. 1, 1962.Google Scholar
9.
Jefferies, J. T.
Line transfer problems. J. Quant. Spectr. Rad. Trans., 3, 217, 1963.Google Scholar
10.
Johnson, H. R.
The equilibrium of Na I in the solar photosphere. Ann. Astrophys., 25, 30, 1962.Google Scholar
12.
Pecker, Ch.
Thomas, R. N.
Radiation transfer problems in the rocket ultra-violet lines. J. Quant. Spectr. Rad. Trans., 3, 163, 1963.Google Scholar
13.
Regemorter H., van
Rate of collisional excitation in stellar atmospheres. Astrophys. J., 136, 906, 1962.Google Scholar
14.
Sobolev, V. V., Ivanov, V. V.
Trud. astr. Obs. Leningrad, gos. Univ., 19, 3, 1962.Google Scholar
15.
Thomas, R. N., Zirker, J. B.
Departures from the Saha equation for ionized helium.
I. Condition of detailed balance in the resonance lines. Astrophys. J., 133, 588, 1961.Google Scholar
16.
Thomas, R. N., Zirker, J. B.
The source function in a non-equilibrium atmosphere. VIII. Solution for a two-level atom in a finite atmosphere. Astrophys. J., 134, 733, 1961.Google Scholar
17.
Thomas, R. N., Zirker, J. B.
Departure from the Saha equation for ionized helium. II. Atmospheric thicknesses too small to satisfy detailed balance in the resonance lines. Astrophys. J., 134, 740, 1961.Google Scholar
18.
Uesugi, A.
Noncoherent scattering in a semi-infinite inhomogeneous atmosphere. Publ. astr. Soc. Japan, 14, 102, 1962.Google Scholar
19.
Uesugi, A.
Noncoherent scattering of blended lines. Publ. astr. Soc. Japan, 14, 147, 1962.Google Scholar
20.
Uesugi, A.
Note on the resolvent of the auxiliary equation for noncoherent scattering. Publ. astr. Soc. Japan, 14, 322, 1962.Google Scholar
21.
Unsöld, A.
Über Abweichungen vom lokalen thermodynamischen Gleichgewicht in der Sonnenatmosphäre. Z. Phys., 171, 44, 1963.Google Scholar
1.
Baschek, B., Traving, G.
Ein Rechenprogramm für die quantitative Analyse von Sternspektren. Z. Astrophys., 54, 7, 1962.Google Scholar
2.
Boyarchuk, A. A., Efimov, Y. S., Stepanov, V. E.
Izv. krym. astrofiz. Obs., 24, 52, 1960.Google Scholar
4.
Elste, G.
The physical meaning of the weight function in the computation of line profiles. J. Quant. Spectr. Rad. Trans., 3, 157, 1963.Google Scholar
5.
Giovanelli, R. G.
The calculation of spectral line profiles with noncoherent scattering. M.N. RAS, 124, 221, 1962.Google Scholar
7.
Guillaume, C.
Raies interdites de O 1 et N 11 dans des étoiles de type B. Bull. Soc. R. Sci. Liège, 31, 549, 1962.Google Scholar
8.
Gusmann, E. A.
Verallgemeinerung der Gewichtsfunktionenmethode auf die Berechnung von Fraunhofer-Linien im Strahlungsstrom. Naturwiss., 50, 495, 1963.Google Scholar
10.
Houziaux, L.
Sur la profondeur optique moyenne de formation des discontinuités de l’hydrogène et le calcul des raies élevées de cet élément. C.R. Acad. Sci. Paris, 257, 54, 1963.Google Scholar
11.
Houziaux, L.
High hydrogen lines in early-type stars. J. Quant. Spectr. Rad. Trans., 3, 167, 1963.Google Scholar
15.
Jorand, M.
Contribution à l’étude des effets influençant le décalage vers le rouge des raies d’absorption du spectre solaire. Ann. Astrophys., 25, 57, 1962.Google Scholar
16.
Kaler, J.
Stellar rotation and luminosity classification. Z. Astrophys., 56, 150, 1962.Google Scholar
17.
Koyama, S.
Extreme Ultra-violet Solar Emission Lines and the Transition Layer between the Chromosphere and the Corona. Publ. astr. Soc. Japan, 15, 15, 1963.Google Scholar
19.
Michard, R.
Formation des raies de Fraunhofer en présence d’un champ magnétique. C.R. Acad. Sci. Paris, 253, 2857, 1961.Google Scholar
20.
Pecker, C., Rohrlich, F.
Forbidden lines in the ground configurations with special regard to the coronal emission. Mém Soc. R. Sci. Liège, IV, 190, 1961.Google Scholar
21.
Pecker, J. C.
La prédiction du spectre UV des étoiles et du Soleil. Mém. Soc. R. Sci. Liège, 5ème série, IV, 45, 1961.Google Scholar
22.
Pottasch, S.
The UV radiation from O stars in diffuse nebulae. Mém. Soc. R. Sci. Liège, 5ème série, IV, 54, 1961.Google Scholar
27.
Underhill, A. B.
An Investigation of the Spectrum from a High-Temperature Model Atmosphere. Publ. Dom. astroph. Obs., 11, 22, 1961.Google Scholar
28.
Underhill, A. B.
A Program for Computing the Theoretical Spectrum from a Model Atmosphere. Publ. Dom. astroph. Obs., 11, 24, 1962.Google Scholar
29.
Underhill, A. B.
A Program for Computing the Spectrum from a Model Atmosphere. J. Quant. Spectr. Rad. Trans., 3, 171, 1963.Google Scholar
30.
Wilson, P. R.
Spectral line profiles in emitting layers. M.N. RAS, 124, 230, 1962.Google Scholar
1.
Andrews, A. D., Rudkjøbing, M.
Contours and equivalent widths of the Ca11 K line for Osawa’s model atmospheres for A stars. Ann. Astrophys., 25, 37, 1962.Google Scholar
2.
Cayrel, R., Jugaku, J.
Predicted fluxes and line intensities in late type model atmospheres. Ann. Astrophys., 26, 495, 1963.Google Scholar
3.
Gebbie, K.B., Seaton, M. J.
Model atmospheres for central stars of planetary nebulae. Nature, Lond., 199, 580, 1963.Google Scholar
4.
Houziaux, L.
Sur l’utilisation d’un réseau de modèles gris pour la détermination des caractéristiques d’une atmosphère stellaire. C.R. Acad. Sci. Paris, 252, 2672, 1961 = Inst. Astrophys. Univ. Liège Coll. 4°, no. 116.Google Scholar
5.
Kopylov, I. M.
Electron densities in atmospheres of hot stars, (in Russian). Izv. krym. astrofiz. Obs., 26, 232, 1961.Google Scholar
6.
Mädlow, M.
Über die Bestimmung der Temperatur—und Drukschichtung in der äusseren Photosphäre aus Messungen im Kontinuum bei Abweichungen vom thermo-dynamischen Gleichgewicht. Z. Astrophys., 55, 29, 1962.Google Scholar
8.
Swihart, T. L., Fischel, D.
A series of subdwarf atmospheres. Astrophys. y. Suppl, 5, 291, 1961.Google Scholar
9.
Uesugi, A.
Atmospheric Models of White Dwarfs. Mem. Coll. Sci., Univ. Kyoto, 30, 161, 1962.Google Scholar
10.
Underhill, A. B.
Concerning the interpretation of the ultra-violet radiation from B stars. Space Sci. Rev., 1, 749, 1963.Google Scholar
11.
Vardya, M. S.
The partition function and depression of the continuum. Observatory, 82, 211, 1962.Google Scholar
12.
Vardya, M. S.
Physical atmospheric parameters for late-type stars. Astrophys. J., 133, 107, 1961.Google Scholar
13.
Vardya, M. S. I.
Physical atmospheric parameters for late-type stars. II. Planck and Rosseland mean of Rayleigh scattering by H2
. Astrophys. J., 136, 303, 1962.Google Scholar
14.
Veer-Menneret C., van ‘t. Influence des termes de nombres quantiques élevés dans le calcul des fonctions de partition et de la population des niveaux. C.R. Acad. Sci. Paris, 253, 380, 1961 = Contr. Inst. Astrophys. Paris (A) no. 277.Google Scholar
15.
Yamashita, Y.
Absorption coefficients in Atmospheres of M-type Stars. Publ. astr. Soc. Japan, 14, 390, 1962.Google Scholar
16.
Zwaan, C.
The continuous absorption coefficient in the violet and ultra-violet region.
Bull. astr. Inst. Netherlds., 16, 225, 1962.Google Scholar
1.
Almar, I.
Quantitative Spektralanalyse des B2-riesensterns gamma Orionis. Mitt. Sternw. Ungar. Akad. Wiss. (Budapest), 44, 1959.Google Scholar
2.
Baschek, B.
Häufigkeitsbestimmung für Kohlenstoff aus CH-Banden im Subdwarf HD 140283 und in der Sonne. Z. Astrophys., 56, 207, 1962.Google Scholar
3.
Böhm, K. H.
A basic limit of the information contained in center-to-limb observations. Astrophys. J., 134, 264,. 1961.Google Scholar
4.
Ezer, D.
The density gradient in the atmosphere of the K-type component of 31 Cygni
. Commun. Faculté Sci. Univ. Ankara (A)
9, 40, 1961 = Commun. Département Astr. Ankara Univ. Nr. 29.Google Scholar
5.
Feautrier, P.
La détermination des températures de surface des modèles d’atmosphère. C.R. Acad. Sci. Paris, 254, 824, 1962.Google Scholar
6.
Gökdoğan, N., Pecker, J.-C.
Point de vue sur la théorie des courbes de croissance. J. Quant. Spectr. Rad. Trans., 3, 151, 1963.Google Scholar
7.
Groth, H. G.
Die Atmosphäre des A2-Ubergiganten α Cygni. II. Quantitative Analyse. Z. Astrophys., 51, 231, 1961.Google Scholar
8.
Houziaux, L.
Atmospheric parameters of ॔ Cassiopeiae, Publ. astr. Soc. Pacif., 73, 64, 1961.Google Scholar
9.
Houziaux, L.
Contributions à l’étude des étoiles à enveloppe. Mém. Acad. R. Belg. Cl. des Sc, 33, fase. 8, 1–104, 1963.Google Scholar
10.
Irosnikov, R. S.
Shock waves in the atmosphere of RR Lyr. Astr. Zu., 38, 623, 1961.(in Russian).Google Scholar
11.
Kawabata, S.
On the Atmosphere of Late Type Component of Zeta Aurigae Type Stars. Mem. Coll. Sci., Univ. Kyoto, 30, 205, 1962.Google Scholar
12.
Kegel, W. H.
Die Atmosphäre des F6 IV-V Sternes γ Serpentis. Z. Astrophys., 55, 221, 1962.Google Scholar
13.
Kolesov, A. K.
Spectres continus d’étoiles chaudes, (in Russian). Astr. Zu., 39, 35,1962.Google Scholar
16.
Nariai, K.
Line Blanketing Effect on the Peculiar Star HD 30353. Publ. astr. Soc. Japan, 15, 7, 1962.Google Scholar
17.
Pagel, B. E. J.
Differential curve of growth analysis of τ Ceti and HD 122563. J. Quant. Spectr. Rad. Trans., 3, 139, 1963.Google Scholar
19.
Rudkjøbing, M.
Baerentzen, J.
Curves of growth of an iron multiplet for Osawa’s model atmospheres for A stars. Ann. Astrophys., 27, fasc. 1, 1964.Google Scholar
20.
Thomas, R. N.
Comment on empirical inference of Doppler widths. Astrophys. J., 137, 38, 1963.Google Scholar
21.
Tsuji, T.
Spectrophotometric Study of Two S-Type Stars HD 216672 and 22649 in the Infra-red Region. Publ. astr. Soc. Japan, 14, 222, 1962.Google Scholar
22.
Underhill, A. B.
Ultra-violet Emission from Stars. Space Research, 3, 1087. NorthHolland Publ. Co., Amsterdam, 1963.Google Scholar
23.
Underhill, A. B.
Concerning the Interpretation of the Ultra-violet Radiation from B Stars. Space Sci. Rev., 1, 749, 1963.Google Scholar
24.
Underhill, A. B.
Concerning the Interpretation of Line Strengths in B Type Spectra
Bull. astr. Inst. Netherlds., 17, 1963.Google Scholar
25.
Weidemann, V.
Effektive Temperatur und Schwerebeschleunigung der weissen Zwerge. Z. Astrophys., 57, 87, 1963.Google Scholar
26.
Yamashita, Y., Unno, W.
Theoretical Study on the Curve of Growth. Publ. astr. Soc. Japan, 15, 230, 1963.Google Scholar
27.
Yamashita, Y., Utsumi, K.
Atmosphere of an M-type Giant Beta Pegasi. Publ. astr. Soc. Japan, 14, 208, 1962.Google Scholar
1.
Baschek, B., Kegel, W. H., Traving, C.
Solare bzw. stellare Oszillatorenstärken des Fe 11. Z. Astrophys., 56, 282, 1963.Google Scholar
2.
Cayrel, G. and R.,
A detailed analysis of the spectrum of Epsilon Virginis. Astrophys. jf., 137
431, 1963.Google Scholar
3.
Debuc, A.
Utilisation des diagrammes abondance-largeur équivalente en vue de la détermination de la composition chimique d’une atmosphère stellaire. C.R. Acad. Sci. Paris, 254, 428, 1962.Google Scholar
4.
Praderie, F.
Influence du carbone sur l’ionisation dans les atmosphères stellaires. C.R. Acad. Sci. Paris, 252, 4114, 1961.Google Scholar
5.
Lebon, M.
Etude préliminaire du spectre de l’étoile 99 Her. C.R. Acad. Sci. Paris, 254, 2141, 1962.Google Scholar
6.
Spite, F.
Résultats préliminaires sur l’évaluation de l’abondance en métaux de quelques étoiles. C.R. Acad. Sci. Paris, 256, 3592, 1963.Google Scholar
7.
van’t Veer, C. Etude spectrophotométrique de quelques étoiles à raies métalliques et détermination de la composition chimique de l’une d’elle. Ann. Astrophys. (in print).Google Scholar
You have
Access