No CrossRef data available.
Article contents
29a. Sous-Commission Pour la Theorie des Atmospheres Stellaires
Published online by Cambridge University Press: 16 November 2021
Abstract
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
- Type
- Meeting Report
- Information
- Copyright
- Copyright © Academic Press 1962
References
Bibliography and References
Books, colloquia and review papers
de Jager, C. and Neven, L.
1959. Commun. Obs. Belg.
157. The empirical determination of stellar photospheric structure.Google Scholar
Gorbatsky, V.G.
1960. Astr. J., Moscow
37, 360. The first plenum of the Commission on the physics of stars and nebulae.Google Scholar
Ueno, S.
1958. Ann. Ap.
21, 18. The probabilistic method. IV. Milne’s problem with non-coherent scattering.Google Scholar
Ueno, S.
1958. Ann. Ap.
21, 71. The Laplace transform method for problems of radiative transfer. V. Milne’s problem with non-coherent scattering.Google Scholar
Barbier, D. and Mayot, M.
1959. Ann. Ap.
22, 426. Une nouvelle solution d’un problème de transport.Google Scholar
Sobolev, V.V.
1958. C.R. Acad. Sci. U.R.S.S.
120, 69. Diffuse radiation in plane layers.Google Scholar
Sobolev, V.V.
1959. Astr. J., Moscow
36, 573. On the theory of radiation in stellar atmospheres.Google Scholar
Kaplan, S.A., Klinishin, I.A. and Seavers, V.N.
1960. Astr. J., Moscow
37, 9, 1960. The theory of light scattering in a medium with a moving boundary.Google Scholar
Underhill, A.B.
1961. Coll. Meudon 1960. Source function and monochromatic flux in an atmosphere with coherent isotropic scattering and absorption.Google Scholar
Ueno, S.
1959. Ann. Ap.
22, 468. The probabilistic method for problems of radiative transfer. IX. Diffuse reflection and transmission in a finite atmosphere with isotropic scattering in the non-conservative case.Google Scholar
Ueno, S.
1959. Ann. Ap.
22, 484. The probabilistic method. XI. On the scattering and transmission functions of S. Chandrasekhar.Google Scholar
Pecker, J.C.
1959. Commun. Obs. Belg.
157, 18. La méthode Krook-Pecker pour le calcul des modèles.Google Scholar
Sobolev, V.V.
1959. Astr. J., Moscow
36, 573. On the theory of radiation diffusion in stellar atmospheres.Google Scholar
Ueno, S.
1959. Ann. Ap.
22, 468. The probabilistic method for problems of radiative transfer. IX. Diffuse reflection and transmission in a finite atmosphere with isotropic scattering in the non-conservative case.Google Scholar
Ueno, S.
1959. Ann. Ap.
22, 484. The probabilistic method for problems of radiative transfer. XI. On the scattering and transmission functions of S. Chandrasekhar.Google Scholar
Busbridge, I.W.
1960. Cambridge Mathematical Tracts. The mathematics of radiative transfer.Google Scholar
Cayrel, R.
1960. Ann. Ap.
23, 245. Sur quelques questions de la théorie des atmosphères stellaires. II. Nouvelles formules d’approximation pour le calcul de l’intensité du rayonnement et du flux.Google Scholar
Böhm, K. H.
1958. Z. Ap.
46, 245. Uber die Grösse der Konvektions-elemente in Schichten mit variabelen Temperatur-gradienten.Google Scholar
Böhm-Vítense, E.
1958. Z. Ap.
46, 108. Uber die Wasserstoff-Konvektionszone in Sternen verschiedener Effektiv-temperaturen vond Leuchtkrafte.Google Scholar
Kaplan, S.A.
1958. Rev. mod. Phys.
30, 1089. Shock waves in magnetogasodynamic turbulence.Google Scholar
Rubasev, B.M. and Svernikova, G.P.
1958. Solnechnie Dannye
11, 58. On the interaction between the hydromagnetic and the electromagnetic factors in the convection zone of the Sun.Google Scholar
Whitney, C.
1958. Smithson. Contr. Astrophys.
2, 365. Granulation and oscillations of the solar atmosphere.Google Scholar
Biermann, L.
1959. Nuovo Cim.
8, serie X, Suppl. p. 189. Stellar atmospheres as a plasma.Google Scholar
Biermann, L., Kippenhahn, R., Lüst, R. and Temesvary, St.
1959. Z. Ap.
48, 172. Beiträge zur Theorie der Sonnengranulation.Google Scholar
Böhm, K. H. and Richter, E.
1959. Z. Ap.
48, 231. Der Einfluss des Strahlungsaustausches auf die Konvektion in einer polytropen Atmosphäre.Google Scholar
Kaplan, S.A. and Kliminshin, I.A.
1959. Astr. J., Moscow
36, 410. Shock waves in stellar envelopes.Google Scholar
Kippenhahn, R.
1959. Z. Ap.
48, 203. Untersuchungen über rotierende Sterne. IV. Der Bewegungszustand der Wasserstoffionisationszone bei frühen Spektraltypen.Google Scholar
Kubikowski, J.
1959. Ann. Ap.
22, 741. Le refroidissement de l’atmosphère derrière le front de l’onde de choq.Google Scholar
Loughhead, R.E. and Bray, R.J.
1959. Nature, Land.
183, 240. ‘Turbulence’ and photospheric granulation.Google Scholar
Mustel, E.R.
1958, 1959. Publ. Crim. Aph. Obs.
19, 153 and 21, 24. The loss of mass by stationary stars.Google Scholar
Odgers, G.J. and Kushwaha, R.S.
1959. Publ. Dom. Ap. Obs.
11, 253. Shock waves in the atmosphere of a long period variable.Google Scholar
Odgers, G.J. and Kushwaha, R.S.
1959. Publ. Dom. Ap. Obs.
11, 105. Shock waves in the atmosphere of the δ Cephei star BW Vul.Google Scholar
Rublev, S.V.
1959. Astr. J., Moscow
36, 73. On the possibility of outflow of matter from supergiant stars of late spectral classes.Google Scholar
Schmeidler, F.
1959. Astr. Nachr.
285, 65. Uber das Turbulenzspektrum der thermischen Convection.Google Scholar
Böhm, K. H. and Richter, E.
1960. Z. Ap.
50, 79. Konvektion in einer Atmosphäre mit tiefenabhängigen Temperaturgradienten und starker Dichtevariation.Google Scholar
Chapman, S. and Aller, L.H.
1960. Ap. J.
132, 461. The influence of diffusion in the Sun.Google Scholar
Fallon, R. J., Mason, E.A. and Vanderslice, J.T.
1960. Ap. J.
131, 12. Energies of various interactions between H and He atoms and ions.Google Scholar
Kaplan, S.A. and Kliminshin, I.A.
1960. Astr.J., Moscow
37, 281. Some comments on radiation by shock waves in cosmic conditions.Google Scholar
Ono, Y., Sakashita, S. and Yamaraki, H.
1960. Progr. theor. Phys., Osaka
23, 294. Propagation of shock waves in inhomogeneous gases, I.Google Scholar
Pacholczyk, A.G.
1960. Atti Accad. Torino
94. Repr. Obs. astr. warsz. 99. On the hydromagnetic wave-fronts in the solar atmosphere, wave-fronts of small amplitude in the non-uniform medium with weak magnetic fields.Google Scholar
Shimooda, H.
1960. Publ. astr. Soc. Japan
12, 168. On turbulence and hydromagnetic turbulence in astrophysics.Google Scholar
Böhm-Vitense, E.
1961. 1960. Varenna Symp. Localised velocity fields of quasi-stationary character. Prototype, granulation convection.Google Scholar
Cuny, Y., Lefèvre, J. and Pecker, J.C.
1961. Coll. Meudon. 1960. The influence of inhomogeneities on central intensities.Google Scholar
Delbouille, L., de Jager, C. and Neven, L.
1961. Coll. Meudon 1960. Solar infra-red O lines.Google Scholar
Underhill, A. B.
1961, 1960 Varenna Symp. ‘Astronomical turbulence’ in stellar atmospheres.Google Scholar
Jeiferies, J.T. and Thomas, R.N.
1959. Ap. J.
129, 401. The influence of a chromosphere.Google Scholar
Dubov, E.E.
1960. Publ. Crim. Aph. Obs.
22, 101. On the energy balance and structure of the chromosphere.Google Scholar
Dubov, E.E.
1960. Publ. Crim. Aph. Obs.
23, 362. Propagation and dissipation of waves in the chromosphere.Google Scholar
Parker, E.N.
1960. Ap.J.
132, 175. Hydromagnetic treatment of the expanding solar corona.Google Scholar
Parker, E.N.
1960. Ap. J.
132, 821. The hydrodynamical theory of solar corpuscular radiation and stellar winds.Google Scholar
Thomas, R.N. and Athay, R.G.
1960. Insterscience Publishers
New York. Physics of the solar chromosphere.Google Scholar
Weyman, R.
1960. Ap. J.
132, 380. Coronal evaporation as a possible mechanism for mass loss in red giants.Google Scholar
Wilson, O. C.
1960. Ap. J.
131, 75. A suggested mechanism for the ejection of matter from M-type stars.Google Scholar
Burgess, A.
1958. Mon. Not. R. astr. Soc.
118, 477. The hydrogen recombination spectrum.Google Scholar
Unsöld, A.
1958. Mon. Not. R. astr. Soc.
118, 3. On the quantitative analysis of stellar spectra. (George Darwin lecture).Google Scholar
Aller, L.H.
1959. Commun. Obs. Belg.
157, 138. Michigan programs on abundances of elements in the Sun and hot stars.Google Scholar
Cayrel, R.
1959. Commun. Obs. Belg.
157, 53. Théorie des écarts à E.T.L. dans une photosphère.Google Scholar
Houziaux, L.
1960. Ann. Ap.
23, 62. Intensités relatives des raies interdites de O 1 dans une atmosphère en expansion.Google Scholar
Kandel, R.
1959. Commun. Obs. Belg.
157, 43. Ecarts à l’équilibre thermodynamique local; cas du Ti vente.Google Scholar
Kanno, M., Kawabata, S. and Kogure, T.
1959. Publ. astr. Soc. Japan
11, 113. Note on Zanstra’s temperatures of the P Cygni stars.Google Scholar
Kogure, T.
1959. Publ. astr. Soc. Japan
11, 127. The radiation field and theoretical Balmer decrements of Be stars, I.Google Scholar
Kogure, T.
1959. Publ. astr. Soc. Japan
11, 278. The radiation and theoretical Balmer decrements of Be stars, II.Google Scholar
Pagel, B. E. J.
1959. Commun. Obs. Belg.
157, 21. Departures from L.T.E. in the continuous spectrum.Google Scholar
Pagel, B.E.J.
1959. Mon. R. astr. Soc.
119, 609. Note on collisional dissocation of the H− ion in the solar atmosphere.Google Scholar
Pecker, J.C.
1959. Ann. Ap.
22, 499. Ecarts à l’équilibre et abondances dans les photosphères solaires et stellaires. I Spectre du Titane neutre.Google Scholar
Pottasch, S.R. and Thomas, R.N.
1959. Ap. J.
130, 941. Departures from the Saha equation under varying conditions of the Ly continuous opacity.Google Scholar
Pottasch, S.R. and Thomas, R.N.
1960. Ap. J.
132, 195. Effect of departures from the Saha equation on the inferred properties of the low chromosphere.Google Scholar
Athay, R.G. and Johnson, H.R.
1960. Ap. J.
131, 413. The excitation of He 1 in the solar spectrum.Google Scholar
Athay, R.G.
1960. Ap. J.
131, 705. The equilibria and U.V. spectra of H, He I, and He II in the solar atmosphere.Google Scholar
Johnson, H.R.
1960. Thesis Univ. Colorado. Helium equilibrium in the solar atmosphere.Google Scholar
Krat, V.A. and Sobolev, V.M.
1960. Pulkovo Bull.
21, (4), 2. Helium excitation in the chromosphere and chromospheric flares.Google Scholar
Pecker, J.C. and Vogel, L.
1960. Ann. Ap.
23, 594. Ecarts à l’équilibre et abondances dans les photosphères solaires et stellaires II Ti, V, C5.Google Scholar
Eugène-Pradérie, F. and Pecker, J.C.
1960. Ann. Ap.
23, 622. Ecarts à l’équilibre et abondances dans les photosphères solaires et stellaires: III CH 4300.Google Scholar
Rountree, J.C.
1960. Ann. Ap.
23, 633. Ecarts à l’équilibre et abondances dans les photosphères solaires et stellaires: IV Ti 11.Google Scholar
Pottasch, S.R. and Thomas, R.N.
1960. Ap. J.
132, 195. Thermodynamic structure of the outer solar atmosphere. VI. Effect of departures from the Saha equation on inferred properties of the low chromosphere.Google Scholar
de Jager, C., Kanno, M. and Neven, L.
1961. Coll. Meudon 1960. Program for the computation of b
n tables for H and He.Google Scholar
Johnson, H.R.
1961. Coll. Meudon 1960. The singlet to triplet intensity ratio of helium in the chromosphere.Google Scholar
Jefferies, J.T. and Thomas, R.N.
1958. Ap. J.
127, 667. Depth dependence of source function for resonance and strong subordinate lines.Google Scholar
Kanno, M., Kawabata, S. and Kogure, T.
1958. Publ. astr. Soc. Japan
10, 129. The formation of forbidden lines in outflowing envelopes.Google Scholar
Sobolev, V.V.
1958. Sc. Pap. Leningrad Univ.
273, 3. Diffuse radiation in a medium with varying properties.Google Scholar
Ueno, S.
1958. J. Math. Mech.
7, 629. The probabilistic method. III. Line formation by coherent scattering.Google Scholar
Ueno, S.
1958. C. R. Acad. Sci., Paris
246, 3415 and 3593. La méthode variationelle pour les problèmes de transfert du rayonnement; formation non-coherente d’une raie d’absorption dans le modèle Milne-Eddington.Google Scholar
Unsöld, A.
1958. Mon. Not. R. astr. Soc.
118, 3. On the quantitative analysis of stellar spectra.Google Scholar
Cayrel, R.
1959. Commun. Obs. Belg.
157, 101. Programme de calcul du profil et de la largeur équivalente des raies pour l’ordinateur IBM 650.Google Scholar
de Jager, C. and Neven, L.
1959. Observatory
79, 102. Saturation effects in very faint fraunhofer lines.Google Scholar
Jefferies, J.T. and Thomas, R.N.
Ap. J.
129, 401. Source function in a non-equilibrium atmosphere; III. The influence of a chromosphere.Google Scholar
Sobolev, V.V.
1959. Astr. J., Moscow
36, 753. Some remarks on the spectra of Be type stars.Google Scholar
ten Bruggencate, P.
1960. Z. Ap.
50, 1. Bemerkungen über Wachstumskurven von Fraunhoferlinien mit wahrer Absorption.Google Scholar
Dumont, S. and Pecker, J.C.
1960. Ann. Ap.
23, 655. Profondeur de formation dans le spectre solaire; I. application à L’inversion de la relation de Laplace.Google Scholar
Hubenet, H.
1960. Rech. astr. Obs. Utrecht
15, 1. The influence of the photospheric model on the solar composition.Google Scholar
Jefferies, J.T. and White, O.R.
1960. Ap. J.
132, 767. Frequency dependence of the source function.Google Scholar
Jefferies, J.T. and Thomas, R.N.
1960. Ap. J.
131, 695. The source function in a non-equilibrium atmosphere; V. Character of the self-reversed emission cores of Ca+, H and K.Google Scholar
Pagel, B.E.J.
1960. Vistas in Astronomy
3, 203. The excitation of emission lines in the spectra of early type stars.Google Scholar
Stepanov, V.E.
1960. Astr. J., Moscow
37, 631. The absorption coefficient in the Zeeman effect for arbitrary multiplet splitting and the transfer equation for light with mutually perpendicular polarization.Google Scholar
Thomas, R.N.
1960. Ap. J.
131, 429. The source function in a non-equilibrium atmosphere; IV. Evolution and application of the net radiative bracket.Google Scholar
Ueno, S.
1960. Ap. J.
132, 729. The probabilistic method for problems of radiative transfer; X. Diffuse reflection and transmission in a finite inhomogeneous atmosphere.Google Scholar
Chadeau, Cl.
1961. Coll. Meudon 1960. Programmes disponibles sur machines électroniques en France.Google Scholar
Mattig, W. and Schröter, E. H.
1961. Coll. Meudon 1960. A comparison between observations and theory in the wings of the Na lines.Google Scholar
Morton, D.C. and Widing, K.G.
1961. coll. Meudon 1960. Profile of the solar Lyman α line.Google Scholar
Schmalberger, D.C. and Wrubel, M.H.
Coll. Meudon
1960. Numerical studies on line blending.Google Scholar
Thomas, R.N.
1961. Coll. Meudon 1960. The equivalent two-level atom approach and the source function.Google Scholar
Thompson, G.I.
1961. Coll. Meudon 1960. The influence of thermal non-coherency on profiles.Google Scholar
Ueno, S.
1961. Mathl. anal, and appl. Stochastic equations in radiative transfer by invariant imbedding methods.Google Scholar
Waddell, J.
1961. Coll. Meudon 1960. Solar centre-limb variations of the central dip of moderately weak lines.Google Scholar
Waddell, J.
1961. Coll. Meudon 1960. Solar centre-limb variations of the Na-D lines from photo-electric observations.Google Scholar
Aller, L.H. and Jugaku, J.
1958. Ap. J.
128, 616. The atmospheres of the B stars; VI. the profile of Hγ as a function of temperature and electron pressure distribution.Google Scholar
Chadeau, Cl.
1959. Commun. Obs. Belg.
157, 108. Calcul des raies de He dans le cas intermédiaire entre l’élargissement Stark linéaire et quadratique.Google Scholar
Griem, H.R., Kolb, A.C. and Shen, K.Y.
1959. Phys. Rev.
116, 4. Stark broadening of hydrogen lines in a plasma.Google Scholar
Hindmarsh, W.R.
1959. Mon. Not. R. astr. Soc.
119, 11. Collisional broadening and shift in the resonance line of Calcium.Google Scholar
Kononovitch, E.V.
1959. Astr. J., Moscow
36, 371. Nomogram to determine parameters of a profile, influenced by self-absorption.Google Scholar
Posener, D.W.
1959. Aust. J. Phys.
12, 184. The shape of spectral lines in tables of the Voigt profile.Google Scholar
van Regemorter, H.
1959. Ann. Ap.
22, 249, 341, 363, 681. Recherches sur les problèmes théoriques de classification stellaire.Google Scholar
Sobolev, V.V.
1959. Astr. J., Moscow
36, 753. Some remarks on the spectra of Be type stars.Google Scholar
Traving, G.
1959. Mitt. astr. Ges. Sonderheft
1. Uber die Theorie der Druckverbreiterung von Spektrallinien.Google Scholar
Underhill, A.B. and Waddell, J.H.
1959. Circ. nat. Bur. Stand.
603. Stark broadening functions for the hydrogen lines.Google Scholar
Cayrel, R. and Traving, G.
1960. Z. Ap.
50, 239. Zur Frage der Druckverbreiterung der solaren Balmer Linien.Google Scholar
Griem, H.R., Kolb, A.C. and Shen, K.Y.
1960. Naval Res. Lab. Report 5455. Stark broadening of hydrogen lines in a plasma.Google Scholar
Jefferies, J.T.
1960. Ap. J.
131, 692. Thermally broadened Stark profiles of some high Balmer lines.Google Scholar
Jugaku, J. and Aller, L.H.
1960. Ap. J.
130, 469. The atmospheres of the B stars; VIII. The precise calculation of Balmer line profiles.Google Scholar
Houziaux, L.
1961. Coll. Meudon 1960. l’Effet Stark pour les raies élevées de l’hydrogène.Google Scholar
Hunger, K. and Larenz, R.W.
1961. Coll. Meudon 1960. Critical remarks on the theory of pressure broadening of spectral lines.Google Scholar
Unsöld, A.
1958. Nachr. Akad. Wiss. Göttingen
2. Uber die mittlere Zustandgrössen und Spektren der Sternatmosphären in Abhängigkeit von ihrem H und He-Gehalt.Google Scholar
Osawa, K.
1959. Publ. astr. Soc. Japan
11, 253. Model stellar atmospheres with high content of helium.Google Scholar
van Regemorter, H.
1959. Ann. Ap.
22, 681. Recherches sur les problèmes théoriques de classification Stellaire; IV. Application aux problèmes de classification.Google Scholar
Saito, S.
1959. Publ. astr. Soc. Japan
11, 98. On the early type model stellar atmospheres.Google Scholar
Saito, S. and Uesugi, A.
1959. Publ. astr. Soc. Japan
11, 90. On the model atmospheres of the O type stars.Google Scholar
Unsöld, A.
1960. Z. Ap
49, 1; and 50, 75. Zur Deutung der kontinuierlichen Sternspektren.Google Scholar
Vardya, M.S. and Wildt, R.
1960. Ap. J.
131, 448. Molecules and late type stellar models.Google Scholar
Underhill, A.B.
1958. Liège Symp., page 17. Introductory remarks concerning the emission lines in Of and WR stars.Google Scholar
Baschek, B.
1959. Z. Ap.
48, 95. Aufbau und chemische Zusammensetzung der Atmosphäre des Subdwarfs HD 140283.Google Scholar
de Jager, C.
1959. Commun. Obs. Belg.
157, 9. Review of modern high dispersion investigations of stellar spectra.Google Scholar
Jugaku, J.
1959. Publ. astr. Soc. Japan
11, 161. On the abundance ratio of helium to hydrogen in the atmosphere of Tau Scorpii.Google Scholar
Kanno, M., Kawabata, S. and Kogure, T.
1958, 1959. Publ. astr. Soc. Japan
10, 129 and 11, 113.Google Scholar
McKellar, A., Aller, L.H., Odgers, G.J. and Richardson, E.H.
1959. Publ. Dom. astrophys. Obs.
11, 35. The chromospheric K-line of Ca 11 in the spectrum of 31 Cygni.Google Scholar
Cayrel, R.
1960. Ann. Ap.
23, 233. Sur quelques questions de la théorie des atmosphères stellaires; I. Détermination de la gravité.Google Scholar
Hunger, K.
1960. Z. Ap.
49, 129. Quantitative analyse des Infra-rot-Spektrums des Ao Sternes Lyrae.Google Scholar
Oke, J. B. and Bonsack, S.J.
1960. Ap. J.
132, 417. An analysis of the absolute energy distribution in the spectrum of RR Lyrae.Google Scholar
Mugglestone, D.
1958. Mon. Not. R. astr. Soc.
118, 432. A study of the determination of solar atmospheric abundances.Google Scholar
Bonsack, W.K.
1959. Ap. J.
130, 843. The abundance of Cr and convective mixing in stars of type K.Google Scholar
Boyarchuk, A.A.
1959. Astr. J., Moscow
36, 766. A quantitative analysis of the chemical composition of the atmosphere of the bright component of β Lyr.Google Scholar
Jugaku, J.
1959. Publ. astr. Soc. Japan
11, 161. On the abundance ratio of He to H in the atmosphere of т Sco.Google Scholar
Neven, L.
1959. Commun. Obs. Belg.
157, 112. Effets de saturation dans les raies de fraunhofer.Google Scholar
Baschek, B.
1960. Z. Ap.
50, 296. Abhangigkeit des Strögrenschen Index m und der farbindices U-B, B-V von der Metallhäufigkeit bei sonnenähnlichen Sternen.Google Scholar
Khokhlov, M.Z.
1960. Publ. Crim. Aph. Obs.
22, 128. An estimate of the upper limit of the lead content of the solar atmosphere from the infra-red lead line λ7229.Google Scholar
You have
Access