In functional logic programs, rules are applicable independently of textual order, i.e., any rule can potentially be used to evaluate an expression. This is similar to logic languages and contrary to functional languages, e.g., Haskell enforces a strict sequential interpretation of rules. However, in some situations it is convenient to express alternatives by means of compact default rules. Although default rules are often used in functional programs, the non-deterministic nature of functional logic programs does not allow to directly transfer this concept from functional to functional logic languages in a meaningful way. In this paper, we propose a new concept of default rules for Curry that supports a programming style similar to functional programming while preserving the core properties of functional logic programming, i.e., completeness, non-determinism, and logic-oriented use of functions. We discuss the basic concept and propose an implementation which exploits advanced features of functional logic languages.