Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-28T23:08:23.797Z Has data issue: false hasContentIssue false

On the Configuration of More and Less Expressive Logic Programs

Published online by Cambridge University Press:  21 March 2022

CARMINE DODARO
Affiliation:
University of Calabria, Rende, Italy (e-mail: [email protected])
MARCO MARATEA
Affiliation:
University of Genoa, Genoa, Italy (e-mail: [email protected])
MAURO VALLATI
Affiliation:
University of Huddersfield, Huddersfield HD1 3DH, UK (e-mail: [email protected])

Abstract

The decoupling between the representation of a certain problem, that is, its knowledge model, and the reasoning side is one of main strong points of model-based artificial intelligence (AI). This allows, for example, to focus on improving the reasoning side by having advantages on the whole solving process. Further, it is also well known that many solvers are very sensitive to even syntactic changes in the input. In this paper, we focus on improving the reasoning side by taking advantages of such sensitivity. We consider two well-known model-based AI methodologies, SAT and ASP, define a number of syntactic features that may characterise their inputs, and use automated configuration tools to reformulate the input formula or program. Results of a wide experimental analysis involving SAT and ASP domains, taken from respective competitions, show the different advantages that can be obtained by using input reformulation and configuration.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Mauro Vallati was supported by a UKRI Future Leaders Fellowship [grant number MR/T041196/1].

References

Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F., Veltri, P. and Zangari, J. 2017. The ASP system DLV2. In LPNMR. Lecture Notes in Computer Science, vol. 10377. Springer, 215–221.Google Scholar
Alviano, M., Dodaro, C., Leone, N. and Ricca, F. 2015. Advances in WASP. In Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA, 27–30 September 2015. Proceedings, Calimeri, F., Ianni, G. and Truszczynski, M., Eds. Lecture Notes in Computer Science, vol. 9345. Springer, 40–54.Google Scholar
Ansótegui, C., Sellmann, M. and Tierney, K. 2009. A gender-based genetic algorithm for the automatic configuration of algorithms. In Principles and Practice of Constraint Programming - CP 2009, 15th International Conference, CP 2009, Lisbon, Portugal, 20–24 September 2009, Proceedings, I. P. Gent, Ed. Notes, Lecture in Computer Science, vol. 5732. Springer, 142–157.Google Scholar
Audemard, G., Lagniez, J. and Simon, L. 2013. Improving glucose for incremental SAT solving with assumptions: Application to MUS extraction. In Theory and Applications of Satisfiability Testing - SAT 2013 - 16th International Conference, Helsinki, Finland, 8–12 July 2013. Proceedings, Järvisalo, M. and Gelder, A. V., Eds. Lecture Notes in Computer Science, vol. 7962. Springer, 309–317.Google Scholar
Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press.CrossRefGoogle Scholar
Biedenkapp, A., Marben, J., Lindauer, M. and Hutter, F. 2018. CAVE: Configuration assessment, visualization and evaluation. In Learning and Intelligent Optimization - 12th International Conference, LION. 115–130.Google Scholar
Biere, A. 2017. Cadical, lingeling, plingeling, treengeling and yalsat entering the SAT competition 2017. In SAT Competition 2017, Solver and Benchmark Descriptions.Google Scholar
Biere, A., Heule, M., van Maaren, H. and Walsh, T., Eds. 2009. Handbook of Satisfiability . Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press.Google Scholar
Breiman, L. 2001. Random forests. Machine Learning 45, 1, 532.CrossRefGoogle Scholar
Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance. Communications of the ACM 54, 12, 92103.CrossRefGoogle Scholar
Calimeri, F., Dodaro, C., Fuscà, D., Perri, S. and Zangari, J. 2020. Efficiently coupling the I-DLV grounder with ASP solvers. Theory and Practice of Logic Programming 20, 2, 205224.CrossRefGoogle Scholar
Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N., Maratea, M., Ricca, F. and Schaub, T. 2020. Asp-core-2 input language format. Theory and Practice of Logic Programming 20, 2, 294309.CrossRefGoogle Scholar
Calimeri, F., Fuscà, D., Perri, S. and Zangari, J. 2017. I-DLV: The new intelligent grounder of DLV. Intelligenza Artificiale 11, 1, 520.CrossRefGoogle Scholar
Calimeri, F., Ianni, G. and Ricca, F. 2014. The third open answer set programming competition. Theory and Practice of Logic Programming 14, 1, 117135.CrossRefGoogle Scholar
Cerutti, F., Vallati, M. and Giacomin, M. 2018. On the impact of configuration on abstract argumentation automated reasoning. International Journal of Approximate Reasoning 92, 120138.CrossRefGoogle Scholar
Dingess, M. and Truszczynski, M. 2020. Automated aggregator - rewriting with the counting aggregate. In Proceedings 36th International Conference on Logic Programming (Technical Communications), ICLP Technical Communications 2020, (Technical Communications) UNICAL, Rende (CS), Italy, 18–24 September 2020, F. Ricca, A. Russo, S. Greco, N. Leone, A. Artikis, G. Friedrich, P. Fodor, A. Kimmig, F. A. Lisi, M. Maratea, A. Mileo and F. Riguzzi, Eds. EPTCS, vol. 325, 96–109.Google Scholar
Eggensperger, K., Lindauer, M. and Hutter, F. 2019. Pitfalls and best practices in algorithm configuration. Journal of Artificial Intelligence Research 64, 861893.CrossRefGoogle Scholar
Erdem, E. and Lifschitz, V. 2003. Tight logic programs. Theory and Practice of Logic Programming 3, 4-5, 499518.CrossRefGoogle Scholar
Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates in answer set programming. Artificial Intelligence 175, 1, 278298.CrossRefGoogle Scholar
Falkner, S., Lindauer, M. and Hutter, F. 2015. Spysmac: Automated configuration and performance analysis of SAT solvers. In Theory and Applications of Satisfiability Testing - SAT 2015, 215–222.Google Scholar
Fichte, J. K., Truszczynski, M. and Woltran, S. 2015. Dual-normal logic programs - the forgotten class. Theory and Practice of Logic Programming 15, 4-5, 495510.CrossRefGoogle Scholar
Fitzgerald, T., Malitsky, Y. and O’Sullivan, B. 2015. Reactr: Realtime algorithm configuration through tournament rankings. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, Q. Yang and M. J. Wooldridge, Eds. AAAI Press, 304310.Google Scholar
Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T. and Ziller, S. 2011. A portfolio solver for answer set programming: Preliminary report. In Logic Programming and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver, Canada, 16–19 May 2011. Proceedings, J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer Science, vol. 6645. Springer, 352–357.Google Scholar
Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From theory to practice. Artificial Intelligence 187, 52–89.Google Scholar
Gebser, M., Maratea, M. and Ricca, F. 2017. The sixth answer set programming competition. Journal of Artificial Intelligence Research 60, 4195.CrossRefGoogle Scholar
Gebser, M., Maratea, M. and Ricca, F. 2020. The seventh answer set programming competition: Design and results. Theory and Practice of Logic Programming 20, 2, 176204.CrossRefGoogle Scholar
Gebser, M. and Schaub, T. 2013. Tableau calculi for logic programs under answer set semantics. ACM Transactions on Computational Logic 14, 2, 15:115:40.CrossRefGoogle Scholar
Geffner, H. 2018. Model-free, model-based, and general intelligence. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, 13–19 July 2018, Stockholm, Sweden, J. Lang, Ed. ijcai.org, 10–17.Google Scholar
Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington, USA, 15–19 August 1988 (2 Volumes), R. A. Kowalski and K. A. Bowen, Eds. MIT Press, 10701080.Google Scholar
Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 3/4, 365–386.Google Scholar
Gomes, C. P., Selman, B., Crato, N. and Kautz, H. A. 2000. Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. Journal of Automated Reasoning 24, 1/2, 67–100.Google Scholar
Haken, A. 1985. The intractability of resolution. Theoretical Computer Science 39, 297308.CrossRefGoogle Scholar
Heule, M. J. H., Järvisalo, M. and Suda, M. 2019. SAT competition 2018. Journal on Satisfiability, Boolean Modeling and Computation 11, 1, 133154.Google Scholar
Hippen, N. and Lierler, Y. 2019. Automatic program rewriting in non-ground answer set programs. In Practical Aspects of Declarative Languages - 21th International Symposium, PADL 2019, Lisbon, Portugal, 14–15 January 2019, Proceedings, J. J. Alferes and M. Johansson, Eds. Lecture Notes in Computer Science, vol. 11372. Springer, 19–36.Google Scholar
Hoos, H. H., Kaminski, R., Lindauer, M. and Schaub, T. 2015. aspeed: Solver scheduling via answer set programming. Theory and Practice of Logic Programming 15, 1, 117142.CrossRefGoogle Scholar
Hoos, H. H., Lindauer, M. and Schaub, T. 2014. claspfolio 2: Advances in algorithm selection for answer set programming. Theory and Practice of Logic Programming 14, 4-5, 569585.CrossRefGoogle Scholar
Hurley, B., Kotthoff, L., Malitsky, Y., Mehta, D. and O’Sullivan, B. 2016. Advanced portfolio techniques. In Data Mining and Constraint Programming - Foundations of a Cross-Disciplinary Approach. Springer, 191–225.Google Scholar
Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2010. Tradeoffs in the empirical evaluation of competing algorithm designs. Annals of Mathematics and Artificial Intelligence 60, 1-2, 6589.CrossRefGoogle Scholar
Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2011. Sequential model-based optimization for general algorithm configuration. In Learning and Intelligent Optimization - 5th International Conference, LION 5, Rome, Italy, 17–21 January 2011. Selected Papers, C. A. C. Coello, Ed. Lecture Notes in Computer Science, vol. 6683. Springer, 507–523.Google Scholar
Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2014. An efficient approach for assessing hyperparameter importance. In Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21–26 June 2014. JMLR Workshop and Conference Proceedings, vol. 32. JMLR.org, 754–762.Google Scholar
Hutter, F., Hoos, H. H., Leyton-Brown, K. and Stützle, T. 2009. Paramils: An automatic algorithm configuration framework. Journal of Artificial Intelligence Research 36, 267306.CrossRefGoogle Scholar
Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H. H. and Leyton-Brown, K. 2017. The configurable SAT solver challenge (CSSC). Artificial Intelligence 243, 1–25.Google Scholar
Hutter, F., Xu, L., Hoos, H. H. and Leyton-Brown, K. 2014. Algorithm runtime prediction: Methods & evaluation. Artificial Intelligence 206, 79111.CrossRefGoogle Scholar
Janhunen, T. 2006. Some (in)translatability results for normal logic programs and propositional theories. Journal of Applied Non-Classical Logics 16, 1-2, 3586.CrossRefGoogle Scholar
Janhunen, T. 2018. Cross-translating answer set programs using the ASPTOOLS collection. Künstliche Intelligenz 32, 2-3, 183184.CrossRefGoogle Scholar
Kadioglu, S., Malitsky, Y., Sellmann, M. and Tierney, K. 2010a. ISAC - instance-specific algorithm configuration. In ECAI 2010 - 19th European Conference on Artificial Intelligence, Lisbon, Portugal, 16–20 August 2010, Proceedings, H. Coelho, R. Studer and M. J. Wooldridge, Eds. Frontiers in Artificial Intelligence and Applications, vol. 215. IOS Press, 751–756.Google Scholar
Kadioglu, S., Malitsky, Y., Sellmann, M. and Tierney, K. 2010b. Isac-instance-specific algorithm configuration. In Proceedings of the European Conference on AI, vol. 215, 751756.Google Scholar
KhudaBukhsh, A. R., Xu, L., Hoos, H. H. and Leyton-Brown, K. 2016. Satenstein: Automatically building local search SAT solvers from components. Artificial Intelligence 232, 20–42.Google Scholar
Kilby, P., Slaney, J. K., Thiébaux, S. and Walsh, T. 2005. Backbones and backdoors in satisfiability. In Proceedings of the Twentieth National Conference on Artificial Intelligence, AAAI 2005, Veloso, M. M. and Kambhampati, S., Eds. AAAI Press/The MIT Press, 13681373.Google Scholar
Lifschitz, V., Pearce, D. and Valverde, A. 2001. Strongly equivalent logic programs. ACM Transactions on Computational Logic 2, 4, 526541.CrossRefGoogle Scholar
Lindauer, M., Hoos, H. H., Hutter, F. and Schaub, T. 2015. Autofolio: An automatically configured algorithm selector. Journal of Artificial Intelligence Research 53, 745778.CrossRefGoogle Scholar
Lindauer, M., Hoos, H. H., Leyton-Brown, K. and Schaub, T. 2017. Automatic construction of parallel portfolios via algorithm configuration. Artificial Intelligence 244, 272290.CrossRefGoogle Scholar
Maratea, M., Pulina, L. and Ricca, F. 2013. Automated selection of grounding algorithm in answer set programming. In AI*IA 2013: Advances in Artificial Intelligence - XIIIth International Conference of the Italian Association for Artificial Intelligence, Turin, Italy, 4–6 December 2013. Proceedings, M. Baldoni, C. Baroglio, G. Boella and R. Micalizio, Eds. Lecture Notes in Computer Science, vol. 8249. Springer, 73–84.Google Scholar
Maratea, M., Pulina, L. and Ricca, F. 2014. A multi-engine approach to answer-set programming. Theory and Practice of Logic Programming 14, 6, 841868.CrossRefGoogle Scholar
Maratea, M., Pulina, L. and Ricca, F. 2015a. Multi-engine ASP solving with policy adaptation. Journal of Logic and Computation 25, 6, 12851306.CrossRefGoogle Scholar
Maratea, M., Pulina, L. and Ricca, F. 2015b. Multi-level algorithm selection for ASP. In Logic Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY, USA, 27–30 September 2015. Proceedings, F. Calimeri, G. Ianni and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol. 9345. Springer, 439–445.Google Scholar
Mitchell, D. G. 2005. A SAT solver primer. Bulletin of the EATCS 85, 112132.Google Scholar
Pulina, L. and Tacchella, A. 2009. A self-adaptive multi-engine solver for quantified boolean formulas. Constraints - An International Journal 14, 1, 80116.CrossRefGoogle Scholar
Syrjänen, T. 2002. Lparse 1.0 user’s manual.Google Scholar
Vallati, M., Chrpa, L., McCluskey, T. L. and Hutter, F. 2021. On the importance of domain model configuration for automated planning engines. Journal of Automated Reasoning 65, 6, 727773.CrossRefGoogle Scholar
Vallati, M., Hutter, F., Chrpa, L. and McCluskey, T. L. 2015. On the effective configuration of planning domain models. In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, Q. Yang and M. J. Wooldridge, Eds. AAAI Press, 17041711.Google Scholar
Vallati, M. and Maratea, M. 2019. On the configuration of SAT formulae. In AI*IA 2019 - Advances in Artificial Intelligence - XVIIIth International Conference of the Italian Association for Artificial Intelligence, Rende, Italy, 19–22 November 2019, Proceedings, M. Alviano, G. Greco and F. Scarcello, Eds. Lecture Notes in Computer Science, vol. 11946. Springer, 264–277.Google Scholar
Vallati, M. and Serina, I. 2018. A general approach for configuring PDDL problem models. In Proceedings of the Twenty-Eighth International Conference on Automated Planning and Scheduling, ICAPS 2018, Delft, The Netherlands, 24–29 June 2018, M. de Weerdt, S. Koenig, G. Röger and M. T. J. Spaan, Eds. AAAI Press, 431436.Google Scholar
Weinzierl, A., Taupe, R. and Friedrich, G. 2020. Advancing lazy-grounding ASP solving techniques - restarts, phase saving, heuristics, and more. Theory and Practice of Logic Programming 20, 5, 609624.CrossRefGoogle Scholar
Xu, L., Hoos, H. H. and Leyton-Brown, K. 2010. Hydra: Automatically configuring algorithms for portfolio-based selection. In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 11–15 July 2010, M. Fox and D. Poole, Eds. AAAI Press.Google Scholar
Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2008. Satzilla: Portfolio-based algorithm selection for SAT. Journal of Artificial Intelligence Research 32, 565606.CrossRefGoogle Scholar
Xu, L., Hutter, F., Hoos, H. H. and Leyton-Brown, K. 2012. Evaluating component solver contributions to portfolio-based algorithm selectors. In Theory and Applications of Satisfiability Testing - SAT 2012, 228–241.Google Scholar
Yuan, Z., Stützle, T. and Birattari, M. 2010. Mads/f-race: Mesh adaptive direct search meets f-race. In Trends in Applied Intelligent Systems - 23rd International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2010, Cordoba, Spain, 1–4 June 2010, Proceedings, Part I, N. García-Pedrajas, F. Herrera, C. Fyfe, J. M. Benítez and M. Ali, Eds. Lecture Notes in Computer Science, vol. 6096. Springer, 41–50.Google Scholar