Published online by Cambridge University Press: 01 July 2016
The knowledge base (KB) paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a KB to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the KB paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company.
This is an extended version of a paper presented at the international symposium on Practical Aspects of Declarative Languages (PADL 2016), invited as a rapid communication in TPLP. The authors acknowledge the assistance of the conference program chairs Marco Gavanelli and John Reppy. This research was supported by the project GOA 13/010 Research Fund KU Leuven and projects G.0489.10, G.0357.12, and G.0922.13 of the Research Foundation - Flanders.