Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
BELLODI, ELENA
LAMMA, EVELINA
RIGUZZI, FABRIZIO
COSTA, VITOR SANTOS
and
ZESE, RICCARDO
2014.
Lifted Variable Elimination for Probabilistic Logic Programming.
Theory and Practice of Logic Programming,
Vol. 14,
Issue. 4-5,
p.
681.
Katzouris, Nikos
Artikis, Alexander
and
Paliouras, Georgios
2014.
Artificial Intelligence: Methods and Applications.
Vol. 8445,
Issue. ,
p.
475.
Dries, Anton
2015.
Declarative Data Generation with ProbLog.
p.
17.
Shterionov, Dimitar
and
Janssens, Gerda
2015.
Practical Aspects of Declarative Languages.
Vol. 9131,
Issue. ,
p.
90.
Wang, Yuanyuan
2015.
Knowledge Science, Engineering and Management.
Vol. 9403,
Issue. ,
p.
778.
Dries, Anton
Kimmig, Angelika
Meert, Wannes
Renkens, Joris
Van den Broeck, Guy
Vlasselaer, Jonas
and
De Raedt, Luc
2015.
Machine Learning and Knowledge Discovery in Databases.
Vol. 9286,
Issue. ,
p.
312.
Shterionov, Dimitar
Renkens, Joris
Vlasselaer, Jonas
Kimmig, Angelika
Meert, Wannes
and
Janssens, Gerda
2015.
Inductive Logic Programming.
Vol. 9046,
Issue. ,
p.
139.
De Raedt, Luc
and
Kimmig, Angelika
2015.
Probabilistic (logic) programming concepts.
Machine Learning,
Vol. 100,
Issue. 1,
p.
5.
Grigore, Radu
and
Yang, Hongseok
2016.
Abstraction refinement guided by a learnt probabilistic model.
ACM SIGPLAN Notices,
Vol. 51,
Issue. 1,
p.
485.
Alberti, Marco
Cota, Giuseppe
Riguzzi, Fabrizio
and
Zese, Riccardo
2016.
AI*IA 2016 Advances in Artificial Intelligence.
Vol. 10037,
Issue. ,
p.
351.
Riguzzi, Fabrizio
Bellodi, Elena
Lamma, Evelina
Zese, Riccardo
and
Cota, Giuseppe
2016.
Probabilistic logic programming on the web.
Software: Practice and Experience,
Vol. 46,
Issue. 10,
p.
1381.
Vlasselaer, Jonas
Van den Broeck, Guy
Kimmig, Angelika
Meert, Wannes
and
De Raedt, Luc
2016.
TP-Compilation for inference in probabilistic logic programs.
International Journal of Approximate Reasoning,
Vol. 78,
Issue. ,
p.
15.
Forstner, Wolfgang
2016.
A future for learning semantic models of man-made environments.
p.
2475.
Kang, Chanhyun
Kraus, Sarit
Molinaro, Cristian
Spezzano, Francesca
and
Subrahmanian, V.S.
2016.
Diffusion centrality: A paradigm to maximize spread in social networks.
Artificial Intelligence,
Vol. 239,
Issue. ,
p.
70.
Bueno, Thiago P.
Maua, Denis D.
de Barros, Leliane N.
and
Cozman, Fabio G.
2016.
Markov Decision Processes Specified by Probabilistic Logic Programming: Representation and Solution.
p.
337.
2016.
Statistical Relational Artificial Intelligence.
Grigore, Radu
and
Yang, Hongseok
2016.
Abstraction refinement guided by a learnt probabilistic model.
p.
485.
Vlasselaer, Jonas
Meert, Wannes
Van den Broeck, Guy
and
De Raedt, Luc
2016.
Exploiting local and repeated structure in Dynamic Bayesian Networks.
Artificial Intelligence,
Vol. 232,
Issue. ,
p.
43.
Vlasselaer, Jonas
Crispim-Junior, Carlos Fernando
Bremond, Francois
and
Dries, Anton
2017.
BEHAVE — Behavioral Analysis of Visual Events for Assisted Living Scenarios.
p.
1347.
Alberti, Marco
Bellodi, Elena
Cota, Giuseppe
Riguzzi, Fabrizio
Zese, Riccardo
Maratea, Marco
Adorni, Giovanni
Cagnoni, Stefano
and
Gori, Marco
2017.
cplint on SWISH: Probabilistic Logical Inference with a Web Browser.
Intelligenza Artificiale,
Vol. 11,
Issue. 1,
p.
47.