Published online by Cambridge University Press: 03 September 2015
This paper studies the relation between two recent extensions of propositional Equilibrium Logic, a well-known logical characterisation of Answer Set Programming. In particular, we show how Temporal Equilibrium Logic, which introduces modal operators as those typically handled in Linear-Time Temporal Logic (LTL), can be encoded into Infinitary Equilibrium Logic, a recent formalisation that allows the use of infinite conjunctions and disjunctions. We prove the correctness of this encoding and, as an application, we further use it to show that the semantics of the temporal logic programming formalism called TEMPLOG is subsumed by Temporal Equilibrium Logic.
This research was partially supported by Spanish MEC project TIN2013-42149-P, Xunta de Galicia GPC2013/070, the French Spanish Laboratory for Advanced Studies in Information, Representation and Processing (LEA-IREP) and the Centre International de Mathématiques et Informatique de Toulouse (CIMI).