Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-17T15:04:04.141Z Has data issue: false hasContentIssue false

Independence-Friendly Logic: A Game-Theoretic Approach, Allen L. Mann , Gabriel Sandu and Merlijn Sevenster , Cambridge University Press, 2011. Paperback, ISBN 9780521149341, 216 pp.

Published online by Cambridge University Press:  30 July 2013

Jouko Väänänen*
Affiliation:
University of Helsinki and University of Amsterdam (e-mail: [email protected])

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Book Review
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ehrenfeucht, A. 1957. Application of games to some problems of mathematical logic. Bulletin de l'Academie Polonaise des Sciences Cl. III. 5, 3537, IV.Google Scholar
Enderton, H. B. 1970. Finite partially-ordered quantifiers. Mathematical Logic Quarterly 16 (8), 393397.Google Scholar
Galliani, P. 2012. Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information. Annals of Pure and Applied Logic 163 (1), 6884.Google Scholar
Grädel, E. and Väänänen, J. 2013. Dependence and independence. Studia Logica 101 (2), 399410.Google Scholar
Henkin, L. 1961. Some remarks on infinitely long formulas. In Infinitistic Methods. Proceedings of the Symposium on Foundations of Mathematics. Pergamon Press, 167183.Google Scholar
Hintikka, J. and Sandu, G. 1989. Informational independence as a semantic phenomenon. In Logic, Methodology and Philosophy of Science, Fenstad, J. E., Frolov, I. T. and Hilpinen, R., Eds. Elsevier, 571589.Google Scholar
Hodges, W. 1997a. Compositional semantics for a language of imperfect information. Logic Journal of the IGPL 5 (4), 539563 (electronic).CrossRefGoogle Scholar
Hodges, W. 1997b Some strange quantifiers. In Structures in Logic and Computer Science, Lecture Notes in Computer Science, vol. 1261. Springer, Berlin, 5165.CrossRefGoogle Scholar
Mauldin, R. D. (Ed.) 1981. The Scottish Book. Birkhäuser Boston, MA. Mathematics from the Scottish Café, Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, TX, May 1979.Google Scholar
Mostowski, A. 1957. On a generalization of quantifiers. Fundamenta Mathematicae 44, 1236.Google Scholar
Thalheim, B. 1991. Dependencies in Relational Databases, Teubner-Texte zur Mathematik, Vol. 126 [Teubner Texts in Mathematics]. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart (with German, French and Russian summaries).CrossRefGoogle Scholar
Väänänen, J. 2007. Dependence Logic, London Mathematical Society Student Texts, Vol 70. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Walkoe, W. J. Jr., 1970. Finite partially-ordered quantification. Journal of Symbolic Logic 35, 535555.CrossRefGoogle Scholar