No CrossRef data available.
Article contents
Independence-Friendly Logic: A Game-Theoretic Approach, Allen L. Mann , Gabriel Sandu and Merlijn Sevenster , Cambridge University Press, 2011. Paperback, ISBN 9780521149341, 216 pp.
Published online by Cambridge University Press: 30 July 2013
Abstract
An abstract is not available for this content so a preview has been provided. Please use the Get access link above for information on how to access this content.
- Type
- Book Review
- Information
- Copyright
- Copyright © Cambridge University Press 2013
References
Ehrenfeucht, A.
1957. Application of games to some problems of mathematical logic. Bulletin de l'Academie Polonaise des Sciences Cl. III.
5, 35–37, IV.Google Scholar
Enderton, H. B.
1970. Finite partially-ordered quantifiers. Mathematical Logic Quarterly
16
(8), 393–397.Google Scholar
Galliani, P.
2012. Inclusion and exclusion dependencies in team semantics: On some logics of imperfect information. Annals of Pure and Applied Logic
163
(1), 68–84.Google Scholar
Grädel, E. and Väänänen, J.
2013. Dependence and independence. Studia Logica
101
(2), 399–410.Google Scholar
Henkin, L.
1961. Some remarks on infinitely long formulas. In Infinitistic Methods. Proceedings of the Symposium on Foundations of Mathematics. Pergamon Press, 167–183.Google Scholar
Hintikka, J. and Sandu, G.
1989. Informational independence as a semantic phenomenon. In Logic, Methodology and Philosophy of Science, Fenstad, J. E., Frolov, I. T. and Hilpinen, R., Eds. Elsevier, 571–589.Google Scholar
Hodges, W.
1997a. Compositional semantics for a language of imperfect information. Logic Journal of the IGPL
5
(4), 539–563 (electronic).CrossRefGoogle Scholar
Hodges, W.
1997b Some strange quantifiers. In Structures in Logic and Computer Science, Lecture Notes in Computer Science, vol. 1261. Springer, Berlin, 51–65.CrossRefGoogle Scholar
Mauldin, R. D. (Ed.) 1981. The Scottish Book. Birkhäuser Boston, MA. Mathematics from the Scottish Café, Including selected papers presented at the Scottish Book Conference held at North Texas State University, Denton, TX, May 1979.Google Scholar
Mostowski, A.
1957. On a generalization of quantifiers. Fundamenta Mathematicae
44, 12–36.Google Scholar
Thalheim, B.
1991. Dependencies in Relational Databases, Teubner-Texte zur Mathematik, Vol. 126 [Teubner Texts in Mathematics]. B. G. Teubner Verlagsgesellschaft mbH, Stuttgart (with German, French and Russian summaries).CrossRefGoogle Scholar
Väänänen, J.
2007. Dependence Logic, London Mathematical Society Student Texts, Vol 70. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Walkoe, W. J. Jr., 1970. Finite partially-ordered quantification. Journal of Symbolic Logic
35, 535–555.CrossRefGoogle Scholar