Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T06:15:41.796Z Has data issue: false hasContentIssue false

Silicification

Published online by Cambridge University Press:  21 July 2017

Susan H. Butts*
Affiliation:
Yale University, Peabody Museum of Natural History, 170 Whitney Ave., P.O. Box 208118, New Haven, CT 06520-8118 USA
Get access

Abstract

Silicification is the replacement of original skeletal material accomplished through the concurrent dissolution of calcium carbonate and precipitation of silica. The processes is aided by the nucleation of silica to organic matter which surrounds the mineral crystallites within the shell. Factors that control silicification are those that influence the dissolution/precipitation process: shell mineralogy, shell ultrastructure (and, therefore, surface area), the amount and location of organic matter, and the character of the enclosing matrix. Silicification, like all types of fossilization, can produce taphonomic biases: it is far more common in Paleozoic than younger deposits, is more likely to occur in organisms with low-magnesium calcite shells, in carbonate sediments, and in environments with elevated dissolved silica.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akahane, H., Furuno, T., Miyajima, H., Yoshikawa, T., and Yamamoto, S. 2004. Rapid wood silicification in hot spring water: an explanation of silicification of wood during the Earth's history. Sedimentary Geology, 169:219228.CrossRefGoogle Scholar
Amores, D. R. and Warren, L. A. 2007. Identifying when microbes biosilicify: The interconnected requirements of acidic pH, colloidal SiO2 and exposed microbial surface. Chemical Geology, 240:298312.Google Scholar
Ballhaus, C., Gee, C. T., Bockrath, C., Greef, K., Mansfeldt, T., and Rhede, D. 2012. The silicification of trees in volcanic ash—an experimental study. Geochimica et Cosmochimica Acta, 84:6274.Google Scholar
Barghoorn, E. S. and Tyler, S. A. 1965. Microorganisms from the Gunflint Chert—These structurally preserved Precambrian fossils from Ontario are the most ancient organisms known. Science, 147:563575.Google Scholar
Berner, R. A. 1975. The role of magnesium in the crystal growth of calcite and aragonite from sea water, Geochimica et Cosmochimica Acta, 39:489504.Google Scholar
Berner, R. A., Berner, E. K., and Keir, R. S. 1976. Aragonite dissolution on the Bermuda Pedestal: Its depth and geochemical significance. Earth and Planetary Science Letters, 30:169178.CrossRefGoogle Scholar
Birnbaum, S. J., and Wireman, J. W. 1984. Bacterial sulfate reduction and pH: implications for early diagenesis. Chemical Geology, 43:143149.Google Scholar
Birnbaum, S. J., and Wireman, J. W. 1985. Sulfate-reducing bacteria and silica solubility: a possible mechanism for evaporite diagenesis and silica precipitation in banded iron formations. Canadian Journal of Earth Sciences, 22:19041909.Google Scholar
Boyce, C. K., Hazen, R. M., and Knoll, A. H. 2001. Nondestructive, in situ, cellular-scale mapping of elemental abundances including organic carbon in permineralized fossils. Proceedings of the National Academy of Sciences of the United States of America, 98:59705974.CrossRefGoogle ScholarPubMed
Brand, U. 1983. Mineralogy and chemistry of the Lower Pennsylvanian Kenrick Fauna, eastern Kentucky, U. S. A., 3. Diagenetic and paleoenvironmental analysis. Chemical Geology, 40:167181.Google Scholar
Brown, G., Catt, J. A., Hollyer, S. E., and Ollier, C. D. 1969. Partial silicification of chalk fossils from the Chilterns. Geological Magazine, 106:583586.Google Scholar
Buening, N., and Carlson, S. J. 1992. Geochemical investigation of growth in selected Recent articulate brachiopods. Lethaia, 25:331345.CrossRefGoogle Scholar
Butts, S. H. 2003. Taxonomy, taphonomy, and paleoecology of the Arco Hills Formation (Chesterian), east-central Idaho. Unpublished Ph.D. dissertation, University of Idaho, Moscow, 215 p.Google Scholar
Butts, S. H. 2004. Silica diagenesis in the Lower Devonian Helderberg Group of New York. Geological Society of America Abstracts with Programs, 36(5):383384.Google Scholar
Butts, S. H. 2007. Silicified Carboniferous (Chesterian) Brachiopoda of the Arco Hills Formation, Idaho. Journal of Paleontology, 81:4863.CrossRefGoogle Scholar
Butts, S. H., and Brjggs, D. E. G. 2011. Silicification through time, p. 411434. In Allison, P. and Bottjer, D. J. (eds.), Taphonomy: Process and Bias Through Time. Topics in Geobiology 32. Springer.Google Scholar
Butts, S. H., Krause, R. A. Jr., and Briggs, D. E. G. 2011. Experimental silicification of bivalves: understanding taphonomic bias. Geological Society of America Abstracts with Programs, 43(5):504.Google Scholar
Calvert, S. E. 1974. Deposition and diagenesis of silica in marine sediments, p. 273299. In Hsu, K. J. and Jenkyns, H. C. (eds.), Pelagic Sediments: On Land and Under The Sea. Special Publication of the International Association of Sedimentologists 1. Blackwell Publishing Ltd., Oxford, UK.Google Scholar
Carlson, S. J., and Leighton, L. R. 2001. The phylogeny and classification of Rhynchonelliformea, p. 2751. In Carlson, S. J. and Sandy, M. R. (eds.), Brachiopods Ancient and Modern: a Tribute to G. Arthur Cooper. Paleontological Society Papers 7, Columbus, Ohio.Google Scholar
Carter, J. G. (ed.) 1990. Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Short Courses in Geology 5, American Geophysical Union, Washington, D. C. Google Scholar
Chave, K. E. 1954a. Aspects of the biogeochemistry of magnesium 2. Calcareous sediments and rocks. The Journal of Geology, 62:587599.Google Scholar
Chave, K. E. 1954b. Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. Journal of Geology, 62:266283.Google Scholar
Chave, K. E., Deffeyes, K. S., Weyl, P. K., Garrels, R. M., and Thompson, M. E. 1962. Observations on the solubility of skeletal carbonates in aqueous solutions. Science, 137:3334.Google Scholar
Cherns, L., and Wright, V. P. 2000. Missing molluscs and evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology, 28:791794.Google Scholar
Clark, I. I., and George, R. 1999. Organic matrix taphonomy in some molluscan shell microstructures. Palaeogeography, Palaeoclimatology, Palaeoecology, 149:305312.CrossRefGoogle Scholar
Cooper, G. A., and Grant, R. E. 1972. Permian Brachiopods of West Texas, I. Smithsonian Contributions to Paleobiology 14. Smithsonian Institute Press, Washington, D. C. Google Scholar
Crenshaw, M. A. 1982. Mechanisms of normal biological mineralization of calcium carbonates, p. 243257. In Nancollas, G. H. (ed.), Biological Mineralization and Demineralization. Springer, Berlin.Google Scholar
Crenshaw, M. A. 1990. Biomineralization mechanisms, p. 19. In Carter, J. G. (ed.), Skeletal Biomineralization: Patterns, Processes and Evolutionary Trends. Short Courses in Geology 5, American Geophysical Union, Washington, D. C.Google Scholar
Curry, G. B., and Ansell, A. D. 1986. Tissue mass in living brachiopods. Biostratigraphie du Paléozoique, 4:231241.Google Scholar
Curry, G. B., Peck, L. S., Ansell, A. D., and James, M. 1989. Physiological constraints in fossil and recent brachiopods. Transactions of the Royal Society of Edinburgh, Earth Sciences, 80:255262.Google Scholar
Cusack, M. 2001. Biomineralization in brachiopod shells, p. 105116. In Carlson, S. J. and Sandy, M. R. (eds.), Brachiopods Ancient and Modern: a Tribute to G. Arthur Cooper. Paleontological Society Papers 7, Columbus, Ohio.Google Scholar
Daley, R. L. 1987. Patterns and controls of skeletal silicification in a Mississippian fauna, northwestern Wyoming. Unpublished Masters thesis, University of Wyoming, 140 p.Google Scholar
Daley, R. L., and Boyd, D. W. 1996. The role of skeletal microstructure during selective silicification of brachiopods. Journal of Sedimentary Research, 66:155162.Google Scholar
Davis, J. A. 1982. Adsorption of natural dissolved organic matter at the oxide/water interface. Geochimica et Cosmochimica Acta, 46:23812393.Google Scholar
Dennison, J. M., and Textoris, D. A. 1970. Devonian Tioga Tuff in northeastern United States. Bulletin Volcanologique, 34:289294.Google Scholar
Emig, C. C. 1990. Examples of post-mortality alteration in Recent brachiopod shells and (paleo) ecological consequences. Marine Biology, 104:233238.Google Scholar
Erwin, D. H., and Kidder, D. L. 2000. Depositional controls on selective silicification of Permian fossils, southwestern United States, p. 407415. In Wardlaw, B. R., Grant, R. E., and Rohr, D. M. (eds.), Guadalupian Symposium. Smithsonian Contributions to Earth Science 32. Smithsonian Institution Press, Washington, D. C.Google Scholar
Fleming, B. A. and Crerar, D. A. 1982. Silicic acid ionization and calculation of silica solubility at elevated temperature and pH application to geothermal fluid processing and reinjection. Geothermics, 11:1529.Google Scholar
Folk, R. L. 1974. The natural history of crystalline calcium carbonate: effect of magnesium content and salinity. Journal of Sedimentary Research, 44:4053.Google Scholar
Francis, S., Margulis, L., and Barghoorn, E. S. 1978a. On the experimental silicification of microorganisms II. On the time of appearance of eukaryotic organisms in the fossil record. Precambrian Research, 6:65100.CrossRefGoogle Scholar
Francis, S., Barghoorn, E. S., and Margulis, L. 1978b. On the experimental silicification of microorganisms III, Implications of the preservation of the green prokaryotic alga Prochloron and other coccoids for interpretation of the microbial fossil record. Precambrian Research, 7:377383.Google Scholar
Glover, C. P., and Kidwell, S. M. 1993. Influence of organic matrix on the postmortem destruction of molluscan shells. Journal of Geology, 101:729747.Google Scholar
Goering, J. J., Nelson, D. M., and Carter, J. A. 1973. Silicic acid uptake by natural populations of marine phytoplankton. Deep-Sea Research, 20:777789.Google Scholar
Götze, J., Möckel, R., Langhof, N., Hengst, M., and Klinger, M. 2008. Silicification of wood in the laboratory. Ceramics Silikáty, 52:268277.Google Scholar
Guidry, S. A., and Chafetz, H. S. 2003. Anatomy of siliceous hot springs: examples from Yellowstone National Park, Wyoming, USA. Sedimentary Geology, 157:71106.Google Scholar
Harper, E. M. 2000. Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? Journal of Zoology, 251:179186.Google Scholar
Hattan, S. J., Laue, T. M., and Chasteen, N. D. 2001. Purification and characterization of a novel calcium-binding protein from the extrapallial fluid of the mollusc, Mytilus edulis . Journal of Biological Chemistry, 276:44614468.CrossRefGoogle ScholarPubMed
Henrich, R. 1985. A calcite dissolution pulse in the Norwegian-Greenland Sea during the last deglaciation. Geologische Rundschau, 75:805827.Google Scholar
Henrich, R., and Wefer, G. 1986. Dissolution of biogenic carbonates; effects of skeletal structure. Marine Geology, 71:341362.CrossRefGoogle Scholar
Hesse, R. 1989. Silica diagenesis; origin of inorganic and replacement cherts. Earth Science Reviews, 26:253284.Google Scholar
Hinman, N. W. 1987. Organic and inorganic chemical controls on the rates of silica diagenesis; a comparison of a natural system with experimental results. Unpublished Ph.D. dissertation, University of California, San Diego. 402 p.Google Scholar
Hinman, N. W. 1990. Chemical factors influencing the rates and sequences of silica phase transitions: Effects of organic constituents. Geochimica et Cosmochimica Acta, 54:15631574.Google Scholar
Hinman, N. W. 1998. Sequences of silica phase transitions: effects of Na, Mg, K, Al, and Fe ions. Marine Geology, 147:1324.CrossRefGoogle Scholar
Hintze, L. F. 1953. Silicification of Ordovician fossils in Utah and Nevada. Geological Society of America Bulletin, 64:15081508.Google Scholar
Holdaway, H. K., and Clayton, C. J. 1982. Preservation of shell microstructure in silicified brachiopods from the Upper Cretaceous Wilmington Sands of Devon. Geological Magazine, 119:371382.Google Scholar
Iler, R. K. 1979. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley, New York.Google Scholar
Jacka, A. D. 1974. Replacement of fossils by length-slow chalcedony and associated dolomitization. Journal of Sedimentary Petrology, 44:421427.Google Scholar
Kastner, M., Keene, J. B., and Gieskes, J. M. 1977. Diagenesis of siliceous oozes; I, Chemical controls on the rate of opal-A to opal-CT transformation; an experimental study. Geochimica et Cosmochimica Acta, 41:10411059.Google Scholar
Keith, J., Stockwell, S., Ball, D., Remillard, K., Kaplan, D., Thannhauser, T., and Sherwood, R. 1993. Comparative-analysis of macromolecules in mollusk shells. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 105:487496.Google Scholar
Kidder, D. L., and Erwin, D. H. 2001. Secular distribution of biogenic silica through the Phanerozoic: Comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109:509522.Google Scholar
Klein, C., Hurlbut, C. S., and Dana, J. D. 1993. Manual of Mineralogy (21st Edition). Wiley, New York.Google Scholar
Klein, R. T., and Walter, L. M. 1995. Interactions between dissolved silica and carbonate minerals: An experimental study at 25–50°C. Chemical Geology, 125:2943.Google Scholar
Knauth, L. P. 1979. A model for the origin of chert in limestone. Geology, 7:274277.2.0.CO;2>CrossRefGoogle Scholar
Knoll, A. H. 1985. Exceptional preservation of photosynthetic organisms in silicified carbonates and silicified peats. Philosophical Transactions of the Royal Society of London B-Biological Sciences, 311:111122.Google Scholar
Konhauser, K. O., Jones, B., Phoenix, V. R., Ferris, G., and Renault, R. W. 2004. The microbial role in hot spring silicification. AMBIO: A Journal of the Human Environment, 33:552558.Google Scholar
Lancelot, Y. 1973. Chert and silica diagenesis in sediments from the central Pacific. Initial Reports of the Deep Sea Drilling Project, 17:377405.Google Scholar
Land, L. S. 1967. Diagenesis of skeletal carbonates. Journal of Sedimentary Petrology, 37:914920.Google Scholar
Laufeld, S., and Jeppsson, L. 1976. Silicification and bentonites in the Silurian of Gotland. Geologiska Föreningens i Stockholm Föhandlingar, 98:3144.Google Scholar
Leo, R. F., and Barghoorn, E. S. 1976. Silicification of Wood. Botanical Museum Leaflets 25. Harvard University, Cambridge, MA.Google Scholar
Loope, D. B., and Watkins, D. K. 1989. Pennsylvanian fossils replaced by red chert: early oxidation of pyritic precursors. Journal of Sedimentary Petrology, 59:375386.Google Scholar
Lynne, B. Y., Campbell, K. A., James, B. J., Browne, P. R., and Moore, J. 2007. Tracking crystallinity in siliceous hot-spring deposits. American Journal of Science, 307:612641.Google Scholar
Maliva, R. G., Knoll, A. H., and Siever, R. 1989. Secular change in chert distribution: A reflection of evolving biological participation in the silica cycle. PALAIOS, 4:519532.CrossRefGoogle ScholarPubMed
Maliva, R. G., Knoll, A. H., and Simonson, B. M. 2005. Secular change in the Precambrian silica cycle; insights from chert petrology. Geological Society of America Bulletin, 117:835845.Google Scholar
Maliva, R. G. and Siever, R. 1988. Mechanisms and controls of silicification of fossils in limestones. Journal of Geology, 96:387398.Google Scholar
Marin, F., and Luquet, G. 2004. Molluscan shell proteins. Comptes Rendus Palevol, 3:469492.Google Scholar
Meyer, F. A. A. 1791. Briefe über einige mineralogische Gegenstände an Herrn Peter Camper, Göttingen.Google Scholar
Meyers, W. J. 1977. Chertification in the Mississippian Lake Valley Formation, Sacramento Mountains, New Mexico. Sedimentology, 24:75105.CrossRefGoogle Scholar
Milllman, J. D., and Boyle, E. 1975. Biological uptake of dissolved silica in the Amazon River estuary. Science, 189:995997.CrossRefGoogle Scholar
Mišík, M. 1995. Selective silicification of calcitic fossils and bioclasts in the West-Carpathian limestones. Geologica Carpathica, 46:151159.Google Scholar
Morse, J. W. 1983. The kinetics of calcium carbonate dissolution and precipitation. Reviews in Mineralogy and Geochemistry, 11:227264.Google Scholar
Nestell, M. K., Nestell, G. P., Wardlaw, B. R., Bell, G. L., and Ivanov, A. O. 2012. Biostratigraphy of a complete Pinery Section (Bell Canyon Formation, Guadalupian, Middle Permian), Guadalupe Mountains, West Texas. Geological Society of America Abstracts with Programs, 44(1):4.Google Scholar
Newell, N. D., and Boyd, D. W. 1970. Oyster-like Permian Bivalvia. Bulletin of the American Museum of Natural History, 143:217282.Google Scholar
Newell, N. D., Rigby, J. K., Fischer, A. G., Whiteman, A. J., Hickox, J. E., and Bradley, J. S. 1953. The Permian Reef Complex of the Guadalupe Mountains Region, Texas and New Mexico; A Study in Paleoecology. W. H. Freeman, San Francisco.Google Scholar
Nicklen, B. L., and Bell, G. L. 2007. Ancient ash beds in the type area of the Middle Permian, Guadalupe Mountains National Park, West Texas, USA. Geological Society of America Abstracts with Programs, 39(6):148.Google Scholar
Palmer, T. J., Hudson, J. D., and Wilson, M. A. 1988. Palaecological evidence for early aragonite dissolution in ancient calcites seas. Nature, 335:809810.Google Scholar
Paraguasso, A. B. 1976. Experimental replacement of silica. Revista Brasiliera de Geociências, 6:8994.Google Scholar
Peck, L. S. 1993. The tissues of articulate brachiopods and their value to predators. Philosophical Transactions of the Royal Society of London, 339:1732.Google Scholar
Peck, L. S., Clarke, A., and Holmes, L. J. 1987. Size, shape, and the distribution of organic matter in the Recent Antarctic brachiopod Liothyrella uva . Lethaia, 20:3340.Google Scholar
Perry, R. S. 2003. Preservation of bioorgainc molecules in amorphous silica in nature. Geological Society of America Abstracts with Programs, 35(6):457 Google Scholar
Railsback, L. B., and Anderson, T. F. 1987. Control of Triassic seawater chemistry and temperature on the evolution of post-Paleozoic aragonite-secreting faunas. Geology, 15:10021005.Google Scholar
Read, J. F. 1998. Phanerozoic carbonate ramps from greenhouse, transitional and ice-house worlds: clues from field and modelling studies. Geological Society of London Special Publications 149:107135.CrossRefGoogle Scholar
Ries, J. B. 2010. Geological and experimental evidence for secular variation in seawater Mg/Ca (calcite-aragonite seas) and its effects on marine biological calcification. Biogeosciences, 7:27952849.Google Scholar
Schmitt, J. G., and Boyd, D. W. 1981. Patterns of silicification in Permian pelecypods and brachiopods from Wyoming. Journal of Sedimentary Research, 51:12971308.Google Scholar
Scholle, P. A., and Ulmer-Scholle, D. S. 2003. A Color Guide to the Petrography of Carbonate Rocks: Grains, Textures, Porosity, Diagenesis. American Association of Petroleum Geologists Memoir 77, Tulsa, Oklahoma.Google Scholar
Schubert, J. K., Kidder, D. L., and Erwin, D. H. 1997. Silica-replaced fossils through the Phanerozoic. Geology, 25:10311034.Google Scholar
Scurfield, G., and Segnit, E. R. 1984. Petrifaction of wood by silica minerals. Sedimentary Geology, 39:149167.Google Scholar
Senkayi, A. L., Dixon, J. B., Hossner, L. R., Yerima, B. P. K., and Wilding, L. P. 1985. Replacement of quartz by opaline silica during weathering of petrified wood. Clays and Clay Minerals, 33:525531.CrossRefGoogle Scholar
Siever, R. 1957. The silica budget in the sedimentary cycle. American Mineralogist, 42:821841.Google Scholar
Siever, R. 1962. Silica solubility, 0–200°C and the diagenesis of siliceous sediments. The Journal of Geology, 70:127150.Google Scholar
Siever, R. 1992. The silica cycle in the Precambrian. Geochimica et Cosmochimica Acta, 56:32653272.Google Scholar
Siever, R., and Woodford, N. 1973. Sorption of silica by clay minerals. Geochimica et Cosmochimica Acta, 37:18511880.Google Scholar
Smith, R. C. II, and Way, J. H. 1988. The Bald Hill bentonite beds; a Lower Devonian pyroclasticbearing unit in the northern Appalachians. Northeastern Geology, 10:216230.Google Scholar
Sperling, E. A., Robinson, J. M., Pisani, D., and Peterson, K. J. 2010. Where's the glass? Biomarkers, molecular clocks, and microRNAs suggest a 200-Myr missing Precambrian fossil record of siliceous sponge spicules. Geobiology, 8:2436.CrossRefGoogle ScholarPubMed
Stanley, S. M., and Hardie, L. A. 1998. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. Palaeogeography, Palaeoclimatology, Palaeoecology, 144:319.Google Scholar
Stanley, S. M., and Hardie, L. A. 1999. Hypercalcification: paleontology links plate tectonics and geochemistry to sedimentology. GSA Today, 9:17.Google Scholar
Summons, R. E. and Walter, M. R. 1990. Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments. American Journal of Science, 290:212244.Google Scholar
Sun, Y., and Balinski, A. 2008. Silicified Mississippian brachiopods from Muhua, southern China: Lingulids, craniids, strophomenids, productids, orthotetids, and orthids. Acta Palaeontologica Polonica, 53:485524.Google Scholar
Tomasovych, A., and Rothfus, T. A. 2005. Differential taphonomy of modern brachiopods (San Juan Islands, Washington State): effect of intrinsic factors on damage and community-level abundance. Lethaia, 38:271292.Google Scholar
Tréguer, P., Nelson, D. M., Van Bennkom, A. J., DeMaster, D. J., Leynaert, A., and Quéguiner, B. 1995. The silica balance in the world ocean: A reestimate. Science, 268:375379.Google Scholar
Tucker, M. E., and Wright, V. P. 1990. Carbonate Sedimentology. Blackwell Science Ltd., Oxford.Google Scholar
Ver Straeten, C. A. 2009. The classic Devonian of the Catskill Front: a foreland basin record of Acadian Orogenesis, p. 7–17-26. In Vollmer, F. (ed.), 81st Annual Meeting Guidebook, New York State Geological Association, New York Google Scholar
Walter, L. M. 1983. The dissolution kinetics of shallow water carbonate grain types; effects of mineralogy, microstructure, and solution chemistry. Unpublished Ph.D. dissertation, University of Miami, 347 p.Google Scholar
Walter, L. M. 1985. Relative reactivity of skeletal components during dissolution, p. 316. In Schneidermann, N. and Harris, P. M. (eds.), Carbonate Cements. SEPM Special Publication 36. SEPM, Tulsa, Oklahoma.CrossRefGoogle Scholar
Walter, L. M., and Morse, J. W. 1984. Reactive surface area of skeletal carbonates during dissolution; effect of grain size. Journal of Sedimentary Petrology, 54:10811090.Google Scholar
Walter, L. M., and Morse, J. W. 1985. The dissolution kinetics of shallow marine carbonates in seawater: A laboratory study. Geochimica et Cosmochimica Acta, 49:15031513.Google Scholar
Weiner, S. 1983. Mollusk shell formation: isolation of two organic matrix proteins associated with calcite deposition in the bivalve Mytilus californianus . Biochemistry, 22:41394145.Google Scholar
Wilkinson, B. H. 1979. Biomineralization, paleoceanography, and the evolution of calcareous marine organisms. Geology, 7:524527.Google Scholar
Williams, A. 1997, Shell Structure, p. 267320. In Kaesler, R. L. (ed.), Treatise on Invertebrate Paleontology, Part H (revised), Brachiopoda, Vol. 1. Geological Society of America and University of Kansas Press, Boulder, CO, and Lawrence, KS.Google Scholar
Williams, L. A., and Crerar, D. A. 1985. Silica diagenesis II. General Mechanisms. Journal of Sedimentary Petrology, 55:312321.Google Scholar
Wright, V. P., Cherns, L., and Hodges, P. 2003. Missing molluscs: Field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology, 31:211214.Google Scholar
Zhuravlev, A. Y., and Wood, R. A. 2009. Controls on carbonate skeletal mineralogy: Global CO2 evolution and mass extinctions. Geology, 37:11231126.Google Scholar